
### WALL COMPLIANCE STATUS REPORT AND COMPLIANCE OF THE STATUS REPORT OF THE

APRIL – SEPTEMBER 2015



SAI LILAGAR POWER COMPANY LIMITED P.O.: GOPAL NAGAR

Dist.: JANJGIR - CHAMPA (C. G.) Pin: 495663

2 x 43 MW Phase I & II

**Coal Based Captive Power Plant** 



### SAI LILAGAR POWER COMPANY LTD. P.O.: GOPAL NAGAR

### DIST.: JANJGIR - CHAMPA (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT

**APRIL TO SEPTEMBER 2015** 

### TABLE OF CONTENTS

| Chapter                                  | # Title                                                                                                                                                                                          | Page #                                              |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                          | Table of Contents<br>Environmental Compliance Status Report                                                                                                                                      | 01 - 02<br>03 - 12                                  |
| 1.0<br>1.1<br>1.2                        | Introduction Environmental Monitoring & Reporting Description of Environment Index Map Study area map of 10 km radius                                                                            | 13 - 13<br>13 - 13<br>13 - 13<br>14 - 14<br>15 - 15 |
| 1.3<br>1.4<br>1.5<br>1.5.1<br>1.6<br>1.7 | Brief Description of Power Plant - SLPL Phase I Brief Description of Power Plant - SLPL Phase II Pollution Control Measures Air Pollution Control Green Belt Development Noise Pollution Control | 16 - 17<br>17 - 18<br>19 - 19<br>19 - 19<br>19 - 19 |
| 2.0<br>2.0.1<br>2.0.2                    | <b>Environment Data Analysis</b> Meteorology Methodology of Sampling                                                                                                                             | 19 - 19<br>20 - 20<br>20 - 20<br>20 - 20            |
| 2.1.1<br>2.1.2<br>2.1.3                  | Observation on Primary Data Temperature Relative Humidity Rainfall                                                                                                                               | 20 - 20<br>20 - 20<br>20 - 20<br>20 - 20            |
| 2.2<br>2.2.1<br>2.2.2<br>2.2.3<br>2.2.4  |                                                                                                                                                                                                  | 21 - 21<br>21 - 21<br>21 - 21<br>21 - 21            |
| 2.3.0<br>2.3.1<br>2.3.2<br>2.4.0         | Source Emission Monitoring Methodology of Sampling Results and Discussion Water Quality                                                                                                          | 22 - 22<br>50 - 50<br>50 - 50<br>50 - 50            |
| 2.4.1<br>2.4.2<br>2.4.3<br>2.4.4         | Methodology of Sampling Analytical Procedure Result and Discussion Raw Water Quality                                                                                                             | 54 - 54<br>54 - 54<br>54 - 54<br>55 - 55<br>55 - 55 |
| 2.4.5<br>2.5.0<br>2.5.1                  | Waste Water Quality Noise Levels Methodology of Sampling                                                                                                                                         | 55 - 55<br>58 - 58<br>58 - 58                       |



### SAI LILAGAR POWER COMPANY LTD. P.O.: GOPAL NAGAR DIST.: JANJGIR - CHAMPA (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

| Analytical Procedure<br>Results and Discussion | 58 - 58        |
|------------------------------------------------|----------------|
| <br>results and Discussion                     | 58 <b>-</b> 58 |

### **List of Figures**

| Figure | # Title                                          | Page #  |
|--------|--------------------------------------------------|---------|
| 1<br>2 | Index Map Study area Map of 10-KM Radius Showing | 14 - 14 |
|        | Sampling Locations                               | 15 - 15 |

### List of Tables

| Table's #             | Tilla                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| - 40.0 0 7            | Title Pa                                                                                                                                                                                                                                                                                                                                 | ige#                                                                                            |
| 1<br>2<br>3<br>4(A-F) | Summary of the Meteorological Data Generated at Site Ambient Air Quality Sampling Locations Summary of Ambient Air Quality Result Ambient Air Quality Data Analysis Inside Plant and Outside Plant                                                                                                                                       | 21 - 21<br>22 - 22                                                                              |
|                       | Thorac Frank and Outside Plant                                                                                                                                                                                                                                                                                                           | 23 - 49                                                                                         |
| 6                     | Source Emission Monitoring for Boiler I&II Source Emission Monitoring for Boiler I&II Water Sampling Locations Water Ground, Surface, Waste Water Quality Noise Level Monitoring Locations inside the Plant Ambient Noise Level Monitoring around the Plant Noise Level around the Plant Noise Level inside the Plant Green Belt Develop | 55 - 55<br>55 - 57<br>58 - 58<br>58 - 61<br>61 - 61<br>62 - 64<br>65 - 65<br>64 - 64<br>65 - 65 |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar

Dist.: Janjgir - Champa (C. G.)
ENVIRONMENTAL COMPLIANCE STATUS REPORT
April 2015 to September 2015

### ACPCPL Phase I - 1 X 43 MW

### ENVIRONMENTAL COMPLIANCE STATUS REPORT- Coal Based AFBC Boiler (2 x 90 TPH)

### October 14 to March 2015

Letter no.: 1806/ F4- 46/ 32/ 05 Dated: 23.06.2005

| S.N.  | Conditions                                                                                                                                                                                                                                                                        | Present Status                                                                                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. i) | All the conditions stipulated by Chhattisgarh Environmental Conservation Board Letter No.: 1284/ TS/ CECB/ 2005 Dated: 17.03.2005 should be strictly implemented.                                                                                                                 | Noted and Complied.                                                                                                                                                                            |
| ii)   | Coal requirement is estimated at 9024 TPD having 46% ash content and 0.5% Sulphur content.                                                                                                                                                                                        | Noted and being complied.                                                                                                                                                                      |
| iii)  | A detailed note on Zero effluents discharge including water utilization for greenbelt development should be submitted to the department of Housing and Environment within a period of one month from the date of clearance letter to Chhattisgarh Environment Conservation Board. | Complied.                                                                                                                                                                                      |
| iv)   | Rainwater harvesting system should be installed in consultation with appropriate authority within a period of six months from the date of clearance.                                                                                                                              | Complied.                                                                                                                                                                                      |
| v)    | A detailed note on watershed development within 10 km radius may be submitted within 6 months.                                                                                                                                                                                    | Complied.                                                                                                                                                                                      |
| vi)   | Gas velocity rate may be confirmed within one month.                                                                                                                                                                                                                              | Complied.                                                                                                                                                                                      |
| vii)  | Space provision made for De-Sulphurisation (FGD) unit.                                                                                                                                                                                                                            | Complied.                                                                                                                                                                                      |
| viii) | Authenticated list of flora & fauna from PCCF/CWLW/ Academic institution/ University may be submitted.                                                                                                                                                                            | Complied. The list of Flora and Fauna was authenticated by the Divisional Forest Officer, Champa and the same was submitted to CECB.                                                           |
| ix)   | As recommended by the State Environment Conservation Board, Green Belt of 40 – 50 m in the portion of where the State road runs, parallel to the site and 50m along the plant boundary should be developed.                                                                       | A massive greenbelt is developed on 6.0 ha available land around the plant periphery which is 1/3 of total area (18.0 ha). Total 25500 saplings are planted till date with 75% surviving rate. |



2 x 43 MW Coal Based Captive Power Plant Phase - I & II

| s.N.  | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Present Status                                                                                                                                                                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x)    | Water authorization from the State Government given for 43 MW Coal Based Captive Power Plant in the area adjacent to the premises of M/s. Lafarge India Private Limited Cement Plant at village – Gopal Nagar, District: Janjgir – Champa (C. G.).                                                                                                                                                                                                                                                                  | Noted.                                                                                                                                                                                                                                                                             |
| xi)   | A detailed note on reduction in water consumption by 25% or more than the present level as stated by the proponent may be submitted to the Chhattisgarh Environment Conservation Board within two months of the issue the clearance letter.                                                                                                                                                                                                                                                                         | Noted and complied.                                                                                                                                                                                                                                                                |
| xii)  | For Gaseous discharge, one stack of 85 meter height each shall be provided with continuous online monitoring system.                                                                                                                                                                                                                                                                                                                                                                                                | Complied.                                                                                                                                                                                                                                                                          |
| xili) | Electrostatic precipitator (ESP) should be installed having adequate efficiency to limit outlet SPM emission to 100 mg/Nm <sup>3</sup> .                                                                                                                                                                                                                                                                                                                                                                            | Complied. ESP's with 99.9% efficiency has been installed to control Stack Emission and the same is observed to be well within prescribed limit of CECB norms revised in year 2008 in CFO i.e., less than 50 mg/Nm <sup>3</sup> .                                                   |
| xiv)  | Ash generation will be utilized 100% beneficial uses such as cement manufacturing in the existing cement plant belonging to M/s. Lafarge India Private Limited. Ash generated should be used in a phased manner as per the provisions of the notification on Fly Ash utilization issued by MoEF in September 1999 and its subsequent amendments. By the end of 9 <sup>th</sup> year, full fly ash utilization should be insured. Borough earth should be taken from ash pond area for construction of ash dyke etc. | Being complied. Adopted dry ash extraction and disposal system. 100% generated fly ash is being given to M/s. Lafarge India Private Limited for cement manufacturing and to brick manufacturers for brick manufacturers. Generated bottom ash is used for filling of stone quarry. |
| x)    | Water authorization from the State Government given for 43 MW Coal Based Captive Power Plant in the area adjacent to the premises of M/s. Lafarge India Private Limited Cement Plant at village – Gopal Nagar, District: Janjgir – Champa (C. G.).                                                                                                                                                                                                                                                                  | Noted.                                                                                                                                                                                                                                                                             |
| xv)   | Necessary drainage network at the proposed CPP site should be developed.                                                                                                                                                                                                                                                                                                                                                                                                                                            | Complied. A RCC drainage network is provided at the site.                                                                                                                                                                                                                          |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II

| S.N.   | Conditions                                                                                                                                                                                                                                                                                                                                                                | Present Status                                                                                                                                                                                                                                       |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xvi)   | Water requirement should not exceed 10584 kilo liter/day. The waste water generated should be recycled and reused in the plant and no waste water should be discharged out side the plant boundary or in natural drain.                                                                                                                                                   | Complied. The wastewater treated in RO plant and the treated water is being recycled in plant process. The rejects from RO plant is reused for Ash Conditioning, IBD Quenching & for sprinkling on roads. Hence the plant is a zero discharge unit.  |
| xvii)  | Waste water of coal handling plant discharge should be treated before disposal.                                                                                                                                                                                                                                                                                           | Being complied. The generated waste water is treated at RO plant & reuse in the process.                                                                                                                                                             |
| xviii) | Regular monitoring of water quality including heavy metals should be undertaken around ash dyke and the project areas to ascertain the change in the water quality due to leaching of contaminants from ash disposal area (if any).                                                                                                                                       | Adopted dry ash extraction and disposal system. Plant is not having ash dyke or any ash storage facility in the plant. Plant is complying 100% ash utilization as per fly ash notification.                                                          |
| xix)   | Noise level should be limited to 75 Leq, and regular maintenance of equipment is undertaken. For people working in the area of generator and other high noise area, earplug should be provided.                                                                                                                                                                           | Noted and being complied. Acoustic enclosures are provided to High noise generating sources. Adequate measures for the control of noise have been taken and ear plugs/ ear muffs are provided to personnel working in high noise generating sources. |
| xx)    | Regular monitoring of the air quality should be carried out in and around the power plant and records should be maintained and submitted to Chhattisgarh Environment Conservation Board on six monthly bases.                                                                                                                                                             | Being complied. Adequate ambient air quality monitoring stations are set and monthly monitoring of ambient air quality is carried out and the reports are regularly submitting to CECB every month.                                                  |
| xxi)   | For controlling fugitive dust, regular sprinkling of water in vulnerable areas of the plant should be ensured.                                                                                                                                                                                                                                                            | Coal dust extraction and suppression system for the control of fugitive dust emission have been provided in the coal handling area.                                                                                                                  |
| xxii)  | All other mitigative measures shall be taken as enumerated in Chapter 5 of the REIA report.                                                                                                                                                                                                                                                                               | Noted and being complied.                                                                                                                                                                                                                            |
| xxiii) | The project proponent should advertise at least in two local newspapers widely circulated in the region of the project, one of which should be in vernacular language of the locality concerned, informing that the project has been accorded environmental clearance and copies of clearance letters are available with the Chhattisgarh Environment Conservation Board. | Complied.                                                                                                                                                                                                                                            |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II

| S.N.   | Conditions                                                                                                                                                                                                                                                                                                                                              | Present Status                                                                                                                                                                                                           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xxiv)  | A separate environment monitoring cell with suitable qualified staff should be set up for implementation of the stipulated environmental safeguards.                                                                                                                                                                                                    | A separate environmental management cell comprising the following is already in place who will be reporting to Project Head/ In-charge at site.  1. Deputy Manager – Env.  2. Chief Chemist  3. Chemists and Technicians |
| xxv)   | Half yearly report on the status of implementation of the stipulated conditions and environmental safeguards should be submitted to Chhattisgarh Environment Conservation Board.                                                                                                                                                                        | Being complied.                                                                                                                                                                                                          |
| xxvi)  | Chhattisgarh Environment Conservation Board will monitor the implementation of the stipulated conditions. Complete set of Environment impact assessment report and management plan should be forwarded to the regional office for their use during monitoring.                                                                                          | Complied                                                                                                                                                                                                                 |
| xxvii) | Separate funds should be allocated for implementation of Environmental Protection measures along with item-wise break-up. These cost should be included as part of the project cost. The funds earmarked for the environment protection measures should not be diverted for other purpose and year-wise expenditure should be reported to the ministry. | Noted and complied.                                                                                                                                                                                                      |
| xxvii) | Full co-operation should be extended to the officers from the state government, Chhattisgarh Environment Conservation Board, Central Pollution Control Board etc. Office of the who would be monitoring the compliance of environmental status.                                                                                                         | Noted.                                                                                                                                                                                                                   |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II

P.O.: Gopal Nagar Dist.: Janjgir - Champa (C. G.)

ENVIRONMENTAL COMPLIANCE STATUS REPORT

April 2015 to September 2015

### ACPCPL Phase II Expansion - 1 X 43 MW

### ENVRONMENTAL COMPLIANCE STATUS REPORT- Coal Based CFBC Boiler (1 x 190 TPH)

Letter No.: J - 13011/31/08-IA.II (T) Dated: 18.02.2009

### Point wise compliance for the conditions specified in Environmental Clearance accorded to ACPCPL Phase - II by MoEF

| S. N. | Condition                                                                                                                                                                                                                                                                 | Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.    | The conditions stipulated by Ministry of Environment & Forests accords Environmental Clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:-             | Point wise compliance for MoEF conditions is as below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (i)   | No additional land in excess of 3.5 Ha shall be used for any activity/facility of this project.                                                                                                                                                                           | Complied. No additional land was acquired for the expansion unit in excess of 3.5 Ha. The total plant area is only <b>18.06</b> ha.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (ii)  | Sulphur and ash contents in the coal to be used in the project shall not exceed 0.4% and 45% respectively at any given time.                                                                                                                                              | Noted and is being complied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (iii) | The height of the stack shall be as per the standards prescribed in this regard or 85 m whichever is more and shall be fitted with continuous online monitoring equipments for Sox, NOx, Hg and Particulate. Exit velocity of flue gases shall not be less than 20 m/sec. | Complied. The stack height has been designed based on sulphur content for the worst coal scenario i.e., 0.5% as per the CPCB emission regulations. The details of calculation has been given below: The total coal requirement is 382T/ hr (912 TPD). Minimum stack height as per CPCB emission regulations, $H = 14 \text{ (Q)}^{0.3} \text{ Where "Q"} - \text{SO}_2 \text{ load in Kg/hr Q} = (0.5/100)*38000*(64/32) = 380\text{Kg/hr}$ Therefore, minimum stack height, $H = 14 \text{ (380)}^{0.3} = 83.2 \text{ m}$ . Hence a stack height of 86 m was proposed and constructed |
| (iv)  | High efficiency Electrostatic Precipitators (ESP's) shall be installed to ensure that particulate emission does not exceed 50 mg/Nm <sup>3</sup> .                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II

| S. N.  | Condition                                                                                                                                                                                                                                                                                                   | Compliance                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (v)    | Adequate dust extraction system such as cyclones/ bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.                                                                                    | Complied. Dry fog dust suppression system is provided to dusty areas, handling points, transfer areas and other vulnerable dusts.                                                                                                                                                                                                                                                            |
| (vi)   | Fly ash shall be collected in dry form and storage facility (Silos) shall be provided. 100% ash utilization (Fly ash and bottom ash) shall be ensured from day one. There shall be no ash pond for this expansion project.                                                                                  | Being complied. Fly ash & bottom ash silos constructed for collection and storage in dry form.  Being complied. Adopted dry ash extraction and disposal system. 100% generated fly ash is being given to M/s. Lafarge India Private Limited for cement manufacturing and to brick manufacturers for brick manufacturers. Generated bottom ash is used for filling of stone quarry.           |
| (vii)  | Air cooled condensers shall be provided.                                                                                                                                                                                                                                                                    | Complied. Air cooled condensers were provided.                                                                                                                                                                                                                                                                                                                                               |
| (viii) | The treated effluents confirming to the prescribed standards shall be re-circulated and reused within the plant. There shall be no discharge outside the plant boundary. Arrangements shall be made that effluents and storm water do not get mixed.                                                        | Complied. The wastewater from different sections shall be treated in RO plant and the treated water shall be recycled in plant process. The rejects from RO plant is reused for Ash Conditioning, IBD Quenching & for sprinkling on roads to minimize the fugitive emission. Hence there shall be no discharge of effluent outside of the plant boundary & the plant is zero discharge unit. |
| (ix)   | A sewage treatment plant shall be provided and the treated sewage shall be used for raising greenbelt/ plantation.                                                                                                                                                                                          | Soak pits are provided for the treatment of generated sewage in the plant.                                                                                                                                                                                                                                                                                                                   |
| (x)    | Rainwater harvesting should be adopted. Central Groundwater Authority/ Board shall be consulted for finalization of appropriate rainwater harvesting technology within a period of three months from the date of clearance and details shall be furnished.                                                  | RWH system is provided in the plant.                                                                                                                                                                                                                                                                                                                                                         |
| (xi)   | Adequate safety measures shall be provided in the plant area to check/ minimize spontaneous fires in coal yard, especially during summer season. Details of these measures along with location plant layout shall be submitted to the Ministry as well as to the Regional Office of the Ministry at Bhopal. | Complied. A fire detection and protection system is provided to check/ minimize spontaneous fires in coal yard and all along the plant premises. On-site Emergency Plan is prepared and under implementation at Project. On site emergency plan is already in implementation at site.                                                                                                        |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II

| <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S. N.    | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Compliance                                                                                                                                                                                                                                                             |
| (xii)    | Storage facility for auxiliary liquid fuels such as LDO and HFO/ LSHS shall be made in the plant area where risk is minimum to the storage facilities. Disaster management plan shall be prepared to meet any eventually in case of an accident taking place.  Mock drills shall be conducted regularly and based on the same, modifications required, if any shall be incorporated in the DMP.  Sulphur content in the liquid fuel will not exceed 0.5%.                                       | provided to store LDO and it is taken care that risk should be minimum. A disaster management plan is prepared at site to meet any eventually in case of an accident taking place.  Noted and being complied. Personnel are trained suitably and prepared mentally and |
| (xiii)   | Regular monitoring of ground water in and around the existing ash pond, if any, including heavy metals ( Arsenic, Mercury, Cr, Lead etc.) shall be carried out, records maintained and six monthly reports shall be furnished to the Regional Office of this Ministry.                                                                                                                                                                                                                          | Noted and being complied. There is no ash pond in the plant as the dry ash disposal system is provided.                                                                                                                                                                |
| (xiv)    | A green belt of adequate width and density shall be developed around the plant periphery covering 1/3 of total area preferably with local species.                                                                                                                                                                                                                                                                                                                                              | A massive greenbelt is developed on 6.0 ha available land around the plant periphery which is 1/3 of total area (18.0 ha). Total 25,500 saplings are planted till date with 70% surviving rate.                                                                        |
| (xv)     | First Aid and sanitation arrangements shall<br>be made available for the drivers and other<br>contract workers during construction phase.                                                                                                                                                                                                                                                                                                                                                       | Complied.                                                                                                                                                                                                                                                              |
| (xvi)    | Noise levels emanating from turbines shall be so controlled such that the noise in the work zone shall be limited to 75 dBA. For people working in the high noise area, requisite personal protective equipment like earplugs/ earmuffs etc. shall be provided. Workers engaged in noisy areas such as turbine area, air compressors etc. shall be periodically examined to maintain automatic record and for treatment for any hearing loss including shifting to non noisy/ less noisy areas. | Noted and being complied. Acoustic enclosures are provided to High noise generating sources. Adequate measures for the control of noise have been taken and ear plugs/ ear muffs are taken into use at noisy work spots.                                               |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II

| S. N.   | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Compliance                                                                                                                                                                                                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (xvii)  | Regular monitoring of ground level concentration of SO2, NOx, SPM and RSPM shall be carried out in the impact zone and records maintained. If at any stage these levels are found to exceed the prescribed limits. Necessary control measures shall be provided immediately. The location of the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. The data so monitored shall also be put on the website of the company.                                                | on monthly basis to check the values of ground level concentrations of all parameters mentioned in the notification of MoEF issued as a G. S. R. 826 (E) on dated: 16 <sup>th</sup> November 2009. The results of parameters are well within prescribed limit mentioned in notification issued by MoEF. |
| (xviii) | Provision shall be made for the housing of construction labor within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.                                                                                                                                                               | Noted and complied.                                                                                                                                                                                                                                                                                     |
| (xix)   | The project proponent shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned, informing that the project has been accorded environmental clearance and copies of the clearance letter are available with the state pollution Control Board/Committee and may also be seen at Website of the Ministry of Environment and Forest at <a href="htt://envfor.nic.in.">htt://envfor.nic.in.</a> | Complied. Published advertise of Environmental Clearance in two (One in Hindi & One in English) local newspapers widely circulated in the region.                                                                                                                                                       |
| (xx)    | A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.                                                                                                                                                                                                                                                                                                                                                                         | A separate environmental management cell comprising the following is already in place who will be reporting to Project Head/ Incharge at site.  1. Deputy Manager – Env.  2. Chief Chemist  3. Chemists and Technicians                                                                                 |
| (xxi)   | Half yearly report on the status of implementation of the stipulated conditions and environmental safeguards shall be submitted to this Ministry/ Regional Office/ CPCB/ SPCB.                                                                                                                                                                                                                                                                                                                                     | Noted and being complied.                                                                                                                                                                                                                                                                               |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II
P.O.: Gopal Nagar
Dist.: Janjgir - Champa (C. G.)
ENVIRONMENTAL COMPLIANCE STATUS REPORT April 2015 to September 2015

| S. N.   | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compliance                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| (xxii)  | Regional Office of the Ministry of Environment & Forests located at Bhopal will monitor the implementation of the stipulated conditions. A complete set of documents including Environmental Impact Assessment Report and Environment Management Plan along with the additional information submitted from time to time shall be forwarded to the Regional Office for their use during monitoring. Project proponent will up-load the compliance status in their website and updates the same from time to time at least six monthly basis. Criteria pollutants levels (stack and ambient levels) will be displayed at the main gate of the power plant. | Noted and being complied.    |
| (xxiii) | Separate funds should be allocated for implementation of environmental protection measures along with item-wise break-up. These cost should be included as part of the project cost. The funds earmarked for the environment protection measures should not be diverted for other purposes and year-wise expenditure should be reported to the Ministry.                                                                                                                                                                                                                                                                                                 | Noted and being complied.    |
| (xxiv)  | The project authorities shall inform the Regional Office as well as the Ministry regarding the date of financial closure and final approval of the project by the concerned authorities and the dates of start of land development work and commissioning of plant.                                                                                                                                                                                                                                                                                                                                                                                      | Noted and complied.          |
| (xxv)   | Full cooperation shall be extended to the Scientists/ Officers from the Ministry/Regional Office of the Ministry at Bhopal/ the CPCB/ the SPCB who would be monitoring the compliance of Environmental status.                                                                                                                                                                                                                                                                                                                                                                                                                                           | Noted and is being complied. |



2 x 43 MW Coal Based Captive Power Plant Phase – I & II
P.O.: Gopal Nagar
Dist.: Janjgir - Champa (C. G.)
ENVIRONMENTAL COMPLIANCE STATUS REPORT April 2015 to September 2015

| S. N. | Condition                                                                                                                                                                                                                                                                                                                                                                            | Compliance |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 4.    | The Ministry of Environment and Forests reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the Ministry. MoEF may impose additional environmental conditions or modify the existing ones, if necessary.                                                                                                                  | Noted.     |
| 5.    | The environmental clearance accorded shall be valid for a period of 5 years to start operations by the power plant.                                                                                                                                                                                                                                                                  | Noted.     |
| 6.    | In case of any deviation or alteration in the project proposed including coal transportation system from these submitted to this Ministry for clearance, a fresh reference should be made to the Ministry to assess the adequacy of the conditions imposed and to add additional environmental protection measures required, if any.                                                 | Noted.     |
| 7.    | The above stipulations would be enforced among others under the water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rule, 1989 and its amendments, the Public Liability Insurance Act, 1991 and its amendments. | Noted.     |
| 8.    | Any appeal against this environmental clearance shall lie with the National Environment Appellate Authority, if preferred, within 30 days as prescribed under Section 11 of the National Environment Appellate Act, 1997.                                                                                                                                                            | Noted.     |



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL – SEPTEMBER 2015

### 1.0 INTRODUCTION:

Sai Lilagar Power Company Limited has been promoted by the KSK Energy Ventures Limited KSKEVL), a company engaged in development of power generation projects. KSKEVL has successfully implemented and operating power generation plants in the country. SLPL is currently implementing many projects, with an installed capacity of over 2062 MW in various states of AP, Tamil Nadu, Chhattisgarh, Rajasthan and Maharasthra. Some of the projects are listed below:

- Sai Lilagar Power Company Limited 2 X 43 MW Coal Based Power Plant at Gopal Nagar, Tah.: Akaltara, Dist.: Janjgir – Champa, Chhattisgarh
- Sitapuram Power Limited 1 x 43 MW Coal based Power Plant at Dondapadu, Mellacheruvu Mandal, Dist.: Nalgonda, Telangana;
- Sai Regency Power Company Private Limited 1 x 58 MW Gas based Power Plant at Ramanathapuram, Tamil Nadu.
- VS Lignite Power Private Limited (VSLP) 1 X 135 MW Lignite based Power Plant, at Gurha, Dist.: Bikaner, Rajasthan;
- Sai Wardha Power Limited (WPCL) 4 x 135 MW Coal Based Power Plant at MIDC, Warora, Dist.: Chandrapur, Maharashtra:
- KSK Mahanadi Power Company Limited (KMPCL) 6 x 600 MW Coal Based Power Plant at Nariyara, Tah.: Akaltara, Dist.: Janjgir Champa, Chhattisgarh.

### 1.1 Environmental Monitoring & Reporting:

SLPL was awarded clearance from Chhattisgarh Government vide the letter no.:1806/ F4-46/32/05 Dated: 23/06/2005 and consent from CECB to operate the plant vide the letter no.: 1133/ TS/ CECB/ 2006 Raipur Dated: 02/03/2006 is required to meet the following conditions with respect to the above letters:

- To submit the Monthly Environmental (Source Emissions, Ambient Air Quality, Noise, Water & Waste Water Quality) Monitoring report to CECB;
- To submit a six monthly (biannual) Compliance report to MoEF, Bhopal office & CECB; and
- To submit an Environmental Statement report to CECB at the end of the every financial year.

The environmental monitoring includes the data generation for various environmental components viz Air, Noise, Water and Waste water so as to meet the above reporting requirements.

### 1.2 Description of Environment:

The coal based power plant is located at Gopal Nagar, Janjgir - Champa District, Chhattisgarh. The index map of the power plant and 10-km radius study area map are shown in **Figure - 1** and **Figure - 2** respectively.

85.0 m high stack of SLPL Phase I & 86.0 high stack of SLPL Phase II are the main source of air pollution from the power plant. Fugitive emissions are accepted from coal handling area, coal storage area and ash handling area.



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL – SEPTEMBER 2015

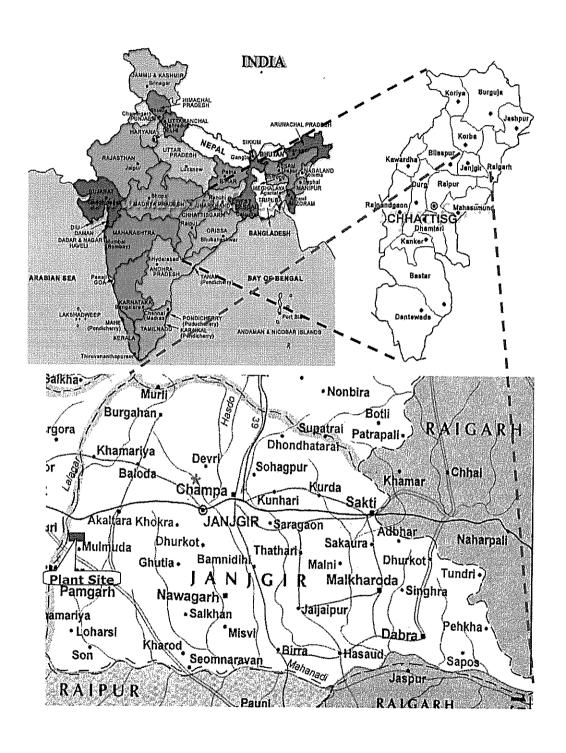



FIGURE-1
INDEX MAP



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL – SEPTEMBER 2015

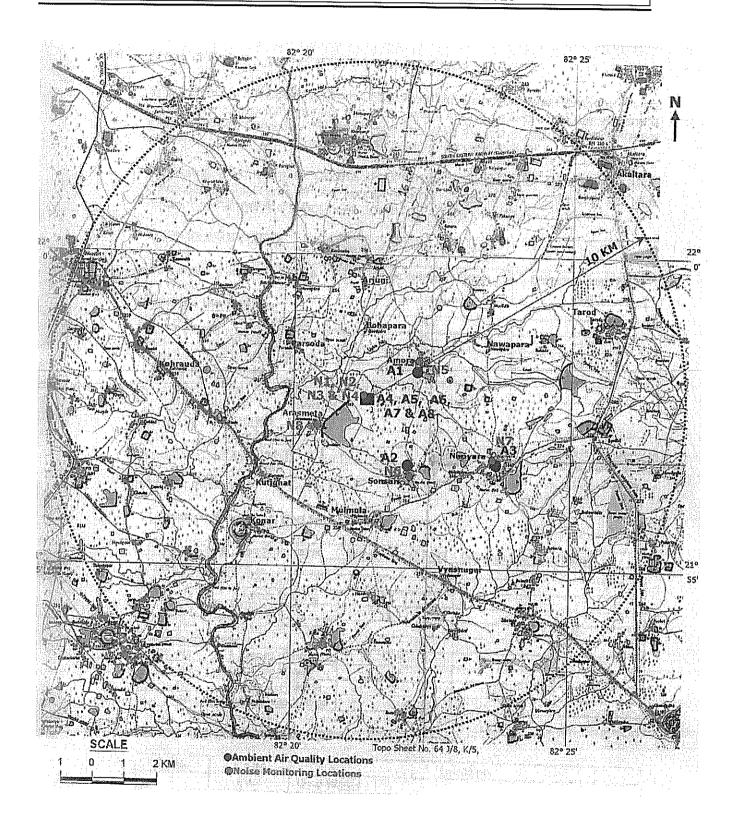



FIGURE-2
STUDY AREA MAP OF 10-KM RADIUS SHOWING SAMPLING LOCATIONS



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL – SEPTEMBER 2015

### 1.3 Brief Description of Power Plant SLPL Phase I & II – 2 x 43 MW Coal Based Phase I - AFBC Boiler (2 x 90 TPH) & Phase II - CFBC Boiler (1 x 190 TPH)

The process uses coal as the main fuel for power generation. The process of power generation from coal is very conventional method and is relatively simple. Coal is first crushed to the required size and then fed into a combustor. The heat liberated in combustion is used to generate high pressure steam which is then expanded in a condensing type of steam turbine generator from which mechanical energy is converted into electrical energy.

The various equipments are as follows:

### 1.3.1 Coal Handling System

Coal is being received by railway wagons at Jai ram Nagar railway siding & from there to plant in trucks covered by tarpaulin. The storage area has a capacity to store around fifteen day's plant requirement including covered storage. Thereafter, coal is being reclaimed and conveyed to the crusher house where coal size reduced to – 6 mm. The crushed coal is being conveyed and stored in the coal bunkers in the power plant. Suitable ventilation facilities and dust extraction, dust suppression and tunnel ventilation facilities are installed in various areas of coal handling plant, as necessary. The conveying system from transfer point to coal storage yard is provided 1 x 750 TPH capacities. Coal handling plant capacity from reclaim hopper to boiler bunker is 90 TPH each. The coal from the stockyard is fed to Primary and Secondary crusher where the size is reduced to – 6 mm. A belt weigher has been provided before the coal is being fed to the coal bunker to weigh the quantity of coal fed to bunker.

### 1.3.2 Steam Generating System

For steam generation, a boiler of 2 x 90 TPH capacity based on Atmospheric Fluidized Bed Combustion (AFBC) technology has been provided. AFBC technology is best suited for burning low grade coal and enables to keep the stack emission such as  $SO_2$  and NOx to acceptable limits by burning the fuel in an efficient and environmentally acceptable manner.

Steam generator is semi outdoor, top-supported, natural circulation, balanced draft, single/bi-drum, and water tube type designed to burn low grade coal. It also includes non-steaming type economizer, conventional type super heater and desuperheating station to control the final steam temp and tubular type air-heater.

### 1.3.3 Main Steam, Gland Steam Condensate and feed water system

The non-reheat steam cycle without regenerative feed heating system. Main steam from the boiler after expansion through turbine is exhausted to condenser. Low pressure heating steam to deaerator is supplied during start up by pressure reduction of main steam to the feed system consists of gland steam condenser, condenser of main air ejectors and deaerator.

Cycle make-up water from DM plant is pumped to the deaerator from the DM plant storage tank. The feed water after deaeration will be drawn by feed pump and will be pumped to the boiler at economizer inlet.

### 1.3.4 Steam Turbine Generator

The Steam Turbine Generator (STG) is of 1 x 43 MW and is condensing type. The inlet steam parameter for the turbine will be  $89.0 \text{ kg/cm}^2$  and  $515^{\circ}\text{C}$ .

### 1.3.5 Electrical System

The turbo-generator will be generating power at 11 KV and will be connected to 6.6 KV switch gear through an Auxiliary transformer. Electrical system will be designed for generator operation in isolation mode as well as parallel operation with each other.



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL – SEPTEMBER 2015

### 1.3.6 Instrumentation and Control System

Microprocessor based electronic control and instrument system for the various units of the plant has been set up. This system will ensure reliable centralized monitoring and control of main equipment and their auxiliaries.

### 1.3.7 Closed Cycle Cooling Water System

Circulating water system for cooling the condenser, Turbine oil cooler, generator air cooler and other auxiliaries will consists of induced draft cooling towers, circulating water pumps, the cooling water supply and return piping.

### 1.3.8 Ash Handling System

Dry ash disposal through pneumatic conveying system to bottom/ fly ash Silos located within plant from where fly ash shall be transported to Cement Plant bulk ash silos through closed tankers. The ash collected at the Boiler bank hoppers, economizer hopper, air preheater hoppers and ESP hopers shall be pneumatically conveyed to ash silos.

### 1.3.9 Electrostatic Precipitator (ESP):

For removal of dust from the flue gases, a high efficiency ESP has been provided for control of particulate emissions.

The various auxiliary systems include:

1. Air conditioning system

2. Ventilation system

3. Compressed air system

4. Fire detection & alarm system

5. Demineralised water plant

Brief Description of Power Plant SLPL Phase II Expansion – 1 x 43 MW Coal Based CFBC Boiler (1 x 190 TPH)

### 1.4 Brief Description of Power Plant: SLPL Phase II – 1 x 43 MW Coal Based CFBC Boiler (1 x 190 TPH)

The process uses coal as the main fuel for power generation. The process of power generation from coal is very conventional method and is relatively simple. Coal is first crushed to the required size and then fed into a combustor. The heat liberated in combustion is used to generate high pressure steam which is then expanded in a condensing type of steam turbine generator from which mechanical energy is converted into electrical energy.

The various equipments are as follows:

### 1.4.1 Coal Handling System

Coal is being received by railway wagons at Jairam Nagar railway siding & from there to plant in trucks covered by tarpaulin. The storage area has a capacity to store around ten day's plant requirement including covered storage. Thereafter, coal is being reclaimed and conveyed to the crusher house where coal size reduced to – 6 mm. The crushed coal is being conveyed and stored in the coal bunkers in the power plant. Suitable ventilation facilities and dust suppression and tunnel ventilation facilities installed in various areas of coal handling plant, as necessary. The conveying system from transfer point to coal storage yard is provided 1 x 750 TPH capacity. Coal handling plant capacity from reclaim hopper to boiler bunker is 190 TPH. The coal from the stockyard is fed to Primary and Secondary crusher where the size is reduced to - 6 mm. A belt weigher has been provided before the coal is being fed to the coal bunker to weigh the quantity of coal fed to bunker.



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL – SEPTEMBER 2015

### 1.4.2 Steam Generating System

For steam generation, a boiler of 1 x 190 TPH capacity based on Circulating Fluidized Bed Combustion (CFBC) technology has been provided. CFBC technology is best suited for burning of low grade coal and enables to keep the stack emission such as  $SO_2$  and NOx to acceptable limits by burning the fuel in an efficient and environmentally acceptable manner.

Steam generator is semi outdoor, top-supported, natural circulation, balanced draft, single/bi-drum, and water tube type designed to burn low grade coal. It also includes non-steaming type economizer, conventional type super heater and desuperheating station to control the final steam temp and tubular type air-heater.

### 1.4.3 Main Steam, Gland Steam Condensate and feed water system

The non-reheat steam cycle without regenerative feed heating system. Main steam from the boiler after expansion through turbine is exhausted to condenser. Low pressure heating steam to deaerator is supplied during start up by pressure reduction of main steam to the feed system consists of gland steam condenser, condenser of main air ejectors and deaerator.

Cycle make-up water from DM plant is pumped to the deaerator from the DM plant storage tank. The feed water after deaeration will be drawn by feed pump and will be pumped to the boiler at economizer inlet.

### 1.4.4 Steam Turbine Generator

The Steam Turbine Generator (STG) is of 1 x 43 MW and is condensing type. The inlet steam parameter for the turbine is 89.0 kg/cm<sup>2</sup> and 515°C.

### 1.4.5 Electrical System

The turbo-generator is generating power at 11 KV and connected to 6.6 KV switchgear through an Auxiliary transformer. Electrical systems are designed for generator operation in isolation mode as well as parallel operation with each other.

### 1.4.6 Instrumentation and Control System

Microprocessor based electronic control and instrument system for the various units of the plant has been set up. This system will ensure reliable centralized monitoring and control of main equipment and their auxiliaries.

### 1.4.7 Closed Cycle Cooling Water System

Circulating water system for cooling the condenser, Turbine oil cooler, generator air cooler and other auxiliaries consists of induced draft cooling towers, circulating water pumps, the cooling water supply and return piping.

### 1.4.8 Ash Handling System

Dry ash disposal through pneumatic conveying system to bottom/ fly ash Silos located within plant from where fly ash is being transported to Cement Plant through closed bulkers. The ash collected at the Boiler bank hoppers, economizer hopper, air preheater hoppers and ESP hopers is being pneumatically conveyed to ash silos.

### 1.4.9 Electrostatic Precipitator (ESP):

For removal of dust from the flue gases, a high efficiency ESP has been provided for control of particulate emissions.

The various auxiliary systems include:

- 1. Air conditioning system
- 3. Compressed air system
- 5. Demineralised water plant

- 2. Ventilation system
- 4. Fire detection & alarm system



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL – SEPTEMBER 2015

### 1.5 Pollution Control Measures

SLPL officials are well versed with their social responsibilities and are very keen in undertaking various steps to reduce the pollution from different environment attributes viz. air, noise, water etc.

### 1.5.1 Air Pollution Control

For removal of dust from the flue gas, high efficiency Electrostatic Precipitator is provided is provided for control of particulate emissions.

There is a like hood of dust generation in coal handling system. The coal crushers are enclosed with built-in dust suppression system like water sprinklers. Manual water sprinklers were provided at coal yards to suppress any dust formation during unloading.

### 1.6 Green Belt Development

A comprehensive plan is envisaged for development of Green Belt around the perimeter of the plant. An experienced horticulturist has been engaged for carrying out the plantation programme.

- The Green belt development will help in controlling the dust emissions as well as acts as barriers for reducing the noise levels;
- Dense tree belt development would be planted around the dust generation points, around the coal handling area and in the plant premises.
- Trees would be planted on the either side of the roads used for transportation to arrest the air born dust.

### 1.7 Noise Pollution Control

Other than the regular maintenance of the various equipments, the ear plugs & ear muffs are provided to all employees working close to the noise generating units. Apart from this, the following steps have been undertaken for reduction of noise level:

- Frequent lubrication of pumps would be undertaken;
- Encasement of noise generating equipment otherwise noise cannot be controlled;
- Providing noise proof cabins to operators where remote control for operating noise generating equipment is feasible; and
- Workers exposure times to the higher noise levels for lesser time have been planned in accordance to the OSHA standards.



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### 2.0 ENVIRONMENTAL DATA ANALYSIS

### 2.0.1 Meteorology

Meteorological data was collected at one station concurrently with the ambient air quality monitoring. The weather station was placed on rooftop of DM Plant at a height of 4.0 m at SLPL. Wind speed, wind direction, relative humidity and temperatures were recorded at hourly intervals continuously.

### 2.0.2 Methodology of Sampling

Micro-meteorological data was observed for wind direction and speed using wind vane and anemometer. The data was recorded at monthly hours. The online wind monitor station is installed & set up in the plant for recording of Micro-meteorological data.

### 2.0.3 Observations On Primary Data

The site specific data is presented in Table-1 and discussed below:

TABLE-1
SUMMARY OF THE METEROLOGICAL DATA GENERATED AT SITE.
(APRIL – SEPTEMBER 2015)

| Month          | Tempe<br>(°0 |      |      | Humidity<br>%) | Total Rainfall |
|----------------|--------------|------|------|----------------|----------------|
|                | Max.         | Min. | Max. | Min.           | (mm)           |
| April 2015     | 43.5         | 18.2 | 51.9 | 21.0           |                |
| May 2015       | 46.6         | 23.0 | 97.0 | 17.0           |                |
| June 2015      | 43.4         | 22.0 | 97.0 | 29.0           | 290.0          |
| July 2015      | 37.1         | 22.0 | 97.0 | 44.9           | 290.0          |
| August 2015    | 36.4         | 21.5 | 97.0 | 48.9           |                |
| September 2015 | 39.7         | 22.0 | 97.0 | 44.0           |                |

### 2.1.1 Temperature

It was observed that the temperature ranged from 18.2°C to 46.6°C. The maximum temperature was recorded in the month of May and January as 46.6°C and minimum temperature was recorded in the month of April as 18.2°C. The monthly variations in the temperature are presented in **Table -1**.

### 2.1.2 Relative Humidity

During the period of observation the relative humidity recorded was moderately high and ranged from 59.9 % to 97.0 %. The maximum humidity 97.0% was observed in the months of April, May, June, July, August and September 2015 the minimum occurred at 97.0% in the month of May, June, July, August and September. The monthly variation in the relative humidity is presented in **Table -1**.

### 2.1.3 Rainfall

A total of **290.0** mm rainfall was recorded during the study period. The six monthly Total Rain Fall is given in **Table-1**.



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### 2.2 Ambient Air Quality

The ambient air quality with respect to the study zone of 10 km radius around the existing Power plant forms the baseline information. All the sampling locations fall within 10 km radial distance from the existing power plant. The assess the effect of power plant activities on the air, environmental parameters like Particulate Matter ( $PM_{10}$ ), ( $PM_{2.5}$ ), Sulphur Dioxide ( $SO_2$ ) and Oxides of Nitrogen ( $NO_x$ ) were monitored. The results of monitoring carried out for study period (**April – September 2015**) are presented. The details of the sampling locations with respect to the Power Plant are given below in Table – 2.0 and depicted in **Figure-2.1**.

TABLE- 2
AMBIENT AIR QUALITY SAMPLING LOCATIONS

| Sampling<br>Code | Locations                       | Sampling<br>Height (m) | Location Details                       |
|------------------|---------------------------------|------------------------|----------------------------------------|
| AAQ1             | Near Main Gate (SLPL)           | 5.0                    | Represents Core zone air quality       |
| AAQ2             | Top of DM Plant SLPL)           | 4.0                    | Represents Core zone air quality       |
| AAQ3             | Near Raw water Reservoir (SLPL) | 4.0                    | Represents Core zone air quality       |
| AAQ4             | Amora village                   | 4.0                    | Represents Down - wind air quality     |
| AAQ5             | Sonsari village                 | 3.5                    | Represents Down –<br>Wind air quality  |
| AAQ6             | Nariyara village                | 4.0                    | Represents Cross –<br>Wind air quality |

### 2.2.1 Methodology of Sampling

Sampling was carried out continuously for forty-eight hours per week at each station during the four week of the study period using pre-calibrated High volume Samplers. In each of the stations earmarked, samples were collected for SO<sub>2</sub> and NOx, Respirable Particulate Matter (PM<sub>10</sub>) and Fine Dust (PM<sub>2.5</sub>). Samples were collected at twenty four hourly intervals and same were sent to field Laboratory for analysis.

### 2.2.2 Analytical Procedure

Whatman GF/A filter paper was used in High-volume sampler for TSPM & RSPM and weighed in Mettler electronic balance and computed as per standard methods. Ambient Air samples were analyzed for  $SO_2$  concentration levels using Improved West – Gaeke method using preprogrammed SYSTRONICS spectrophotometer at a wavelength of 560nm. NOx concentration levels were estimated using **Jacob and Hocheiser modified (Na-As) method** using preprogrammed SYSTRONICS spectrophotometer at a wavelength of 540 nm.

### 2.2.3 Presentation of Primary Data

The survey results of all the sampling locations are presented in **Table - 3(A) to 3(F).** Various statistical parameters like maximum and minimum values have been computed from the observed raw data for all the AAQ monitoring stations. The summary of these results for all the locations is presented in **Table - 3.** These are compared with the standards prescribed by Central Pollution Control Board (CPCB) for rural and residential zone and industrial zone.



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### 2.2.4 Observation based on Primary Data

### AAQ1: Near Main Gate (ACPCL)

The values for PM<sub>10</sub> and PM  $_{2.5}$  ranged from 52.1 to 67.2µg/m<sup>3</sup> & 26.4 to 39.0 µg/m<sup>3</sup> during the study period. Similarly SO<sub>2</sub> and NO<sub>x</sub> levels were recorded in the range of 12.8 to 18.3 µg/m<sup>3</sup> and 14.5 to 21.8µg/m<sup>3</sup> respectively.

### **AAQ2: Amora Village**

The values for PM<sub>10</sub> and PM<sub>2.5</sub> ranged from 42.1 to 55.6 g/m<sup>3</sup> and 19.0 to 27.  $\mu$ g/m<sup>3</sup> during the study period. Similarly SO<sub>2</sub> and NOx levels were recorded in the range of 9.6 to 14.1 $\mu$ g/m<sup>3</sup> and 12.0 to 16.1 $\mu$ g/m<sup>3</sup> respectively.

### AAQ3: Sonsari Village

The values for PM<sub>10</sub> and PM<sub>2.5</sub> ranged from 46.7 to 54.1 $\mu$ g/m<sup>3</sup> and 20.3 to 25.8 $\mu$ g/m<sup>3</sup> during the study period. Similarly SO<sub>2</sub> and NOx levels were recorded in the range of 9.9 to12.9  $\mu$ g/m<sup>3</sup> and 11.9 to15.0 $\mu$ g/m<sup>3</sup> respectively.

### AAQ4: Nariyara Village

The values for PM<sub>10</sub> and PM<sub>2.5</sub> ranged from 44.7 to  $55.7\mu g/m^3$  and 19.1 to  $25.8 \mu g/m^3$  during the study period. Similarly SO<sub>2</sub> and NOx levels were recorded in the range of 10.7 to 13.3  $\mu g/m^3$  and 12.2 to 15.9  $\mu g/m^3$  respectively.

### AAQ5: Tarod Village

The values for  $PM_{10}$  and  $PM_{2.5}$  ranged from 46.3 to 57.1µg/m³ and 21.7 to 27.6µg/m³ during the study period. Similarly  $SO_2$  and  $NO_x$  levels were recorded in the range of 10.8 to 14.0µg/m³ and 12.9 to 17.1µg/m³ respectively.

### AAQ6: Jhalmala Village

The values for PM<sub>10</sub> and PM<sub>2.5</sub> ranged from 43.2 to  $53.1\mu g/m^3$  and 17.5 to  $23.2\mu g/m^3$  during the study period. Similarly SO<sub>2</sub> and NO<sub>x</sub> levels were recorded in the range of 10.0 to  $13.1\mu g/m^3$  and 12.2 to 15.8  $\mu g/m^3$  respectively

TABLE-3
SUMMARY OF AMBIENT AIR QUALITY RESULT
(April – September 2015)

| Location              | PM   | 10   | PM   | 2.5  | S    | <b>D</b> <sub>2</sub> | N    | O <sub>x</sub> |
|-----------------------|------|------|------|------|------|-----------------------|------|----------------|
| Location              | Max. | Min. | Max. | Min. | Max. | Min.                  | Max. | Min.           |
| Near Main Gate (SLPL) | 67.2 | 52.1 | 39.0 | 26.4 | 18.3 | 12.8                  | 21.8 | 14.5           |
| Amora Village         | 55.6 | 42.1 | 27.5 | 19.0 | 14.1 | 9.6                   | 16.1 | 12.0           |
| Sonsari Village       | 54.0 | 46.7 | 25.8 | 20.3 | 12.9 | 9.9                   | 15.0 | 11.9           |
| Nariyara Village      | 55.7 | 44.7 | 25.8 | 19.1 | 13.3 | 10.7                  | 15.9 | 12.2           |
| Tarod Village         | 57.1 | 46.3 | 27.6 | 21.7 | 14.0 | 10.8                  | 17.1 | 12.9           |
| Jhalmala Village      | 53.1 | 43.2 | 23.2 | 17.5 | 13.1 | 10.0                  | 15.8 | 12.2           |



SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II

P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.)

ENVIRONMENTAL COMPLIANCE STATUS REPORT

APRIL TO SEPTEMBER 2015

### TABLE – 4 (A) Ambient Air Quality Data Analysis

Inside Ambient Air Quality Monitoring

Location: Plant site

| Location: Plant Site | Tall Si                    | ָנָנ                     |                             |                                 |                                        |                                                    |                  |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                              |                               |
|----------------------|----------------------------|--------------------------|-----------------------------|---------------------------------|----------------------------------------|----------------------------------------------------|------------------|-----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| Monitoring<br>Date   | PM <sub>2.5</sub><br>µg/m³ | PM <sub>10</sub><br>µg/m | SO <sub>2</sub><br>µg/m³    | NOx<br>µg/m³                    | C <sub>6</sub> H <sub>6</sub><br>µg/m³ | Benzo(a) pyrene in Arsenic Particulate µg/m³ µg/m³ | Arsenic<br>µg/m³ | Nickel<br>µg/m³ | Lead<br>µg/m³ | ng/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | нд/ш<br>1   III                | NH <sub>3</sub><br>µg/m³      |
|                      |                            |                          |                             |                                 |                                        | A                                                  | APRIL 2015       | 2               | 944           | - Laboratory - Lab | and pools                      |                               |
|                      |                            |                          |                             |                                 |                                        | <i>\$</i> 5                                        | SHUT DOWN        | Z               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                               |
| Limits as            | 09                         | 100                      | 08                          | 80                              | 5.0                                    | 1.0                                                | 6.0              | 20              | 1.0           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                           | 400                           |
| Test<br>Methods      | Gravi                      | Gravimetric<br>Method    | Improved<br>West &<br>Geake | Modifie d Jacob & A Hochh eiser | Solvent  <br>followe<br>Ans            | Solvent Extraction followed by GC Analysis         |                  | AAS/ICP         |               | UV Photometric<br>method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NDIR<br>Spectroscopy<br>Method | indophenols<br>Blue<br>Method |
|                      |                            |                          |                             | 37.5                            |                                        |                                                    |                  | 7-1             | 0000 77 77 77 | 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                               |

\*\* As per National Ambient Air Quality Standards - G. S. R. 826(E) notification dated 16.11.2009.

### SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II

P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.)
ENVIRONMENTAL COMPLIANCE STATUS REPORT

| THE CONTRACT OF THE CONTRACT O | Ť                                       | ng/m³                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indophenols<br>Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** | =                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ódox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;<br>;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO<br>CO                                | =                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NDIR<br>ectrosc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444,000                                 | _                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | =                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | etric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o³<br>hg/m³                             | =                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hotom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700                                     | Lcau<br>µg/m³                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AAS/ICF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arconic                                 | hg/m³                                                                                       | 1AY 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzo(a)<br>pyrene in                   | Particulate<br>Phase<br>µg/m³                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WANTED TO THE PARTY OF THE PART |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extraction<br>d by GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solvent E followed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                       | m/grd                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Modifie<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C C                                     | SO <sub>2</sub><br>µg/m³                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Improved<br>West &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Geake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | riw <sub>10</sub>                                                                           | The second secon                                                             | 53.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | metric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ā                                       | FM2.5<br>µg/m³                                                                              | - THE STATE OF THE                                                             | 26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gravii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Monitoring<br>Date                                                                          | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04.05.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05.05.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.05,2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.05.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.05.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.05.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.05.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.05.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limits as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NAAQS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Benzo(a) O <sub>3</sub> CO O <sub>3</sub> CO Dyrene in Association Nickell Lead ug/m³ ug/m³ | ng PM <sub>2.5</sub> PM <sub>10</sub> SO <sub>2</sub> NO <sub>X</sub> C <sub>6</sub> H <sub>5</sub> Particulate μg/m³ μg | PM <sub>2.5</sub> μg/m³         μg/m³ | PM2.5   PM4.0   SO2   NOx   C6H6   Particulate   µg/m³   µg/ | PM2.5   PM4.0   SO2   NOx   C6H6   Pyrene in pg/m³   µg/m³   µg/m³ | PM2.5   PM10   SO2   NOX   C6H5   Particulate   Pug/m³   µg/m³   µg/ | PM2.5         PM4.9         SO2 μg/m³ μg/m | PM2.5         PM.10         SO2         NOx lg/m³         CeH6 particulate lg/m³         Arsenic lg/m³         Nickel lg/m³         Lead lg/m³         Lead lg/m³         Lead lg/m³         III         I | PMass   PMas | PM <sub>2.5</sub> PM <sub>10</sub> SO <sub>2</sub> NOx L <sub>6</sub> H <sub>9</sub> Pyrene in µg/m³ µg/m | PM2.6         PM.10         SO <sub>2</sub> NOx         C <sub>6</sub> H <sub>g</sub> Particulate µg/m³ Particulate µg/ | PM <sub>2.5</sub> PM <sub>10</sub> SO <sub>2</sub> NOx 26H <sub>g</sub> Particulate μg/m³ μg/m² μg/m | PM25<br>μg/m³         PM25<br>μg/m³         PM30<br>μg/m³         C6Hg<br>μg/m³         Paraco(a)<br>μg/m³         Arsenic<br>μg/m³         Nickel<br>μg/m³         Lead<br>μg/m³         Lead<br>μg/m³         Lead<br>μg/m³         Lead<br>μg/m³         μg/m³         μg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PML25   PMI19   SO2   NOX   CeH6   Particulate   Pufm3   µg/m3   µg/ | PM25   PM16   SO2   NOX   C6H5   Parteulate   pulm3   pulm3 | PMs_15   PMs_16   SO_2   NOx   CeH <sub>5</sub>   Pytrente in page   Pytrente | PM <sub>2.5</sub>   PM <sub>1.9</sub>   SO <sub>2.3</sub>   NOX   C <sub>6</sub> H <sub>8</sub>   Particulate   Pg/m³   Pg/m³ |

\*\* As per National Ambient Air Quality Standards - G. S. R. 826(E) notification dated 16.11.2009.

### Man Knowledge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

| _                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |            | <del></del> r | —          |            | _          | _        | _          | _          | <del></del> |           | 1    |                                                  |
|-------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|---------------|------------|------------|------------|----------|------------|------------|-------------|-----------|------|--------------------------------------------------|
| HZ                      | hg/m³                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <20     | <20        | <20           | <20        | <20        | <20        | <20      | <20        | <20        | <20         | 90,       | 004  | Indophenols<br>Blue<br>Method                    |
|                         | =                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 196     | 175        | 184           | 192        | 171        | 194        | 187      | 191        | 178        | 184         |           |      | opy<br>1                                         |
| os m/gr                 | =                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 253     | 240        | 246           | 254        | 237        | 258        | 250      | 252        | 239        | 243         | 0         | 2000 | NDIR<br>Spectroscopy<br>Method                   |
| Aliabert 1              | _                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 224     | 202        | 212           | 223        | 204        | 227        | 216      | 222        | 208        | 213         |           |      | Š                                                |
|                         | =                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.1     | 7.2        | 6.3           | 7.5        | 8.6        | 9.3        | 8.4      | 7.2        | 8.1        | 0.9         |           |      | netric<br>1                                      |
| O <sub>3</sub><br>µg/m³ | =                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.1    | 11.3       | 10.5          | 11.6       | 12.5       | 13.6       | 14.0     | 12.6       | 13.3       | 10.8        | ,         | 100  | UV Photometric<br>method                         |
|                         | ••••                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2    | 9.6        | 8.4           | 6.6        | 10.5       | 11.1       | 11.8     | 10.3       | 11         | 8.6         |           |      | 20                                               |
| 3                       | hg/m <sup>3</sup>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.013   | 0.015      | 0.018         | 0.014      | 0.016      | 0.012      | 0.015    | 0.013      | 0.017      | 0.014       |           | 1.0  |                                                  |
| i di di                 | ulckei<br>µg/m³            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0     | 1.5        | 0.9           | 1.3        | 1.5        | 1.7        | 1.9      | 1.4        | 1.0        | 1.3         |           | 20   | AAS/ICP                                          |
|                         | Arsenic<br>µg/m³           | JUNE 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.001  | <0.001     | <0.001        | <0.001     | <0.001     | <0.001     | <0.001   | <0.001     | <0.001     | <0.001      |           | 6.0  |                                                  |
| Benzo(a)<br>pyrene in   | 41                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1.0    | <1.0       | <1.0          | <1.0       | <1.0       | <1.0       | <1.0     | <1.0       | <1.0       | <1.0        |           | 1.0  | Solvent Extraction<br>followed by GC<br>Analysis |
| -                       | Cene<br>pg/m³              | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.001  | <0.001     | <0.001        | <0.001     | <0,001     | <0.001     | <0.001   | <0.001     | <0.001     | <0.001      |           | 5.0  | Solvent Extractio<br>followed by GC<br>Analysis  |
| :                       | NOx<br>hg/m³               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.4    | 15.9       | 18.5          | 17.4       | 19.3       | 16,9       | 15.7     | 18.3       | 17.4       | 16.1        |           | 80   | Modifie d Jacob & Hochh eiser                    |
|                         | SO <sub>2</sub><br>µg/m³   | - Constitution of the Cons | 140     | 14.1       | 16.4          | 14.5       | 16.1       | 14.8       | 14.1     | 15.5       | 14.4       | 14.0        |           | 08   | Improved<br>West &<br>Geake                      |
| -                       | PM <sub>10</sub><br>µg/m³  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.0    | 50.7       | 57.4          | 55.4       | 58.4       | 56.4       | 61.7     | 59.4       | 57.4       | 9.09        |           | 100  | Gravimetric<br>Method                            |
|                         | PM <sub>2.5</sub><br>µg/m³ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200     | 21.3       | 32.7          | 30.3       | 34.3       | 313        | 33.4     | 30.9       | 32.4       | 29.8        |           | 09   | Gravii                                           |
|                         | Monitoring<br>Date         | to the state of th | 300 301 | 01.06.2015 | 02.00,2013    | 09 06 2015 | 15.06.2015 | 16.06.2015 | 22.00.22 | 23.06.2015 | 29.05.2015 | 30.06.2015  | Limits as | per  | Test                                             |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.



# SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

|             |                                    |                   |           |            | . ,        |            | -          | -          | _          |            |           |      | -     |                                                  |
|-------------|------------------------------------|-------------------|-----------|------------|------------|------------|------------|------------|------------|------------|-----------|------|-------|--------------------------------------------------|
| Ť           | m/grl                              |                   | <20       | <20        | <20        | <20        | <20        | <20        | <20        | <20        |           | 400  |       | Indophenols<br>Blue<br>Method                    |
|             | =                                  |                   | 203       | 193        | 191        | 201        | 183        | 201        | 194        | 184        |           |      |       | ydc                                              |
| CO<br>hg/m³ |                                    |                   | 261       | 245        | 251        | 260        | 242        | 263        | 255        | 262        |           | 2000 |       | NDIR<br>Spectroscopy<br>Method                   |
| a reason in |                                    |                   | 230       | 208        | 220        | 231        | 210        | 232        | 222        | 219        |           |      |       | Spe                                              |
|             |                                    |                   | 7.8       | 9.6        | 8.2        | 7.3        | 6.3        | 8.5        | 7.4        | 8.3        |           |      |       | etric                                            |
| O3<br>µg/m³ | =                                  |                   | 11.6      | 13.1       | 12.4       | 11.0       | 10.9       | 12.3       | 11.7       | 11.5       | •         | 100  |       | UV Photometric<br>method                         |
|             |                                    |                   | 9.2       | 11.3       | 10.4       | 9.3        | 8.6        | 10.1       | 9.6        | 10.0       |           |      |       | W .                                              |
| 7           | hg/m³                              |                   | 0.010     | 0.013      | 0.016      | 0.014      | 0.012      | 0.015      | 0.011      | 0.012      |           | 0.   | -     | _                                                |
| I of oil    | nickei<br>µg/m³                    |                   | 0.8       | 1.2        | 1.5        | 1.1        | 6.0        | 1.3        | 1.1        | 1.4        | •         | 70   |       | AAS/ICP                                          |
|             | Arsenic<br>µg/m³                   | JULY 2015         | <0.001    | <0.001     | <0.001     | <0,001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 0.9  |       |                                                  |
| Benzo(a)    | Particulate Hrsenic<br>Phase µg/m³ | _                 | <1.0      | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 1.0  |       | Solvent Extraction<br>followed by GC<br>Analysis |
|             | CeHs<br>hg/m³                      | - China de Partir | <0.001    | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  |       | Solvent E<br>followed<br>Ana                     |
|             | NOx<br>hg/m³                       | Advantage         | 18.0      | 17.5       | 19.6       | 18.2       | 20.9       | 18.5       | 17.3       | 19.9       |           | 80   |       | Modifie d Jacob & Hochh eiser                    |
|             | SO <sub>2</sub><br>µg/m³           |                   | 16.3      | 15.5       | 17.8       | 15.9       | 17.5       | 16.2       | 15.5       | 16.9       |           | 80   |       | Improved<br>West &<br>Geake                      |
|             | PM <sub>10</sub><br>µg/m³          | - Parties         | 63.1      | £ 69       | 61.3       | 787        | 61.5       | 59.5       | 6.09       | 62.5       | -         | 100  |       | Gravimetric<br>Method                            |
|             | PM <sub>2.5</sub><br>µg/m³         | i Lindre          | 32.2      | 34.9       | 36.0       | 33.0       | 36.1       | 34.9       | 36.1       | 34.5       |           | 09   |       | Gravi                                            |
|             | Monitoring<br>Date                 | 11.144.111        | 700 20 30 | 07 07 2015 | 13 07 2015 | 17 07 2015 | 20.07.2015 | 21 07 2015 | 27.07.2015 | 28 07 2015 | Limits as | per  | NAAQS | Test                                             |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

### SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II

P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

| :                  |                                        |                                         | 0                        | Š               |               | Benzo(a)<br>pyrene in               | , c               | l               | -     |                                         | O <sub>3</sub><br>µg/m³ |                                         | 3    | co<br>hg/m³  | Z       |       |
|--------------------|----------------------------------------|-----------------------------------------|--------------------------|-----------------|---------------|-------------------------------------|-------------------|-----------------|-------|-----------------------------------------|-------------------------|-----------------------------------------|------|--------------|---------|-------|
| Monitoring<br>Date | FM2.5<br>µg/m³                         | rM <sub>10</sub><br>µg/m³               | sO <sub>2</sub><br>µg/m³ | NOX<br>hg/m³    | reng<br>hg/m³ | Particulate Hg/m³ Phase Hg/m³ µg/m³ | Hg/m <sup>3</sup> | nickei<br>hg/m³ | ng/m³ | -                                       | =                       | =                                       | _    |              | hg/m³   | .e_   |
|                    | ************************************** | *************************************** |                          |                 |               | AU                                  | AUGUST 2015       | 15              |       |                                         |                         |                                         |      |              |         |       |
| 07.08.2015         | 34.6                                   | 59.7                                    | 15.3                     | 17.2            | <0.001        | <1.0                                | <0.001            | 9.0             | 0.008 | 8.4                                     | 10.6                    | 9.9                                     | 221  | 255   196    | 6 <20   |       |
| 08.08.2015         | 36.1                                   | 63.5                                    | 17.6                     | 20.6            | <0.001        | <1.0                                | <0.001            | 0.7             | 0.010 | 10.6                                    | 12.8                    | 8.1                                     | 199  | 238 174      | 4 <20   |       |
| 14.08.2015         | 33.1                                   | 65.1                                    | 16.2                     | 18.4            | <0.001        | <1.0                                | <0.001            | 1.0             | 0.007 | 9.6                                     | 11.7                    | 7.4                                     | 214  | 246   184    | 4 <20   |       |
| 15.08.2015         | 35.1                                   | 62.4                                    | 15.2                     | 17.9            | <0.001        | <1.0                                | <0.001            | 6.0             | 0.009 | 8.2                                     | 10.9                    | 6.4                                     | 225  | 251   194    | 4 <20   |       |
| 21.08.2015         | 37.6                                   | 63.2                                    | 17.2                     | 21.4            | <0.001        | <1.0                                | <0.001            | 9.0             | 0.012 | 9.5                                     | 11.4                    | 7.8                                     | -    | -            |         |       |
| 22.08.2015         | 35.4                                   | 65.4                                    | 15.7                     | 18.5            | <0.001        | <1.0                                | <0.001            | 1.1             | 0.007 | 8.7                                     | 10.2                    | 6.7                                     | 226  |              |         |       |
| 28.08.2015         |                                        | 62.3                                    | 18.3                     | 21.8            | <0.001        | <1.0                                | <0.001            | 1.2             | 0.009 | 10.4                                    | 12.8                    | 8.5                                     | 216  |              |         |       |
| 29.08.2015         | 36.7                                   | 64.8                                    | 17.0                     | 20.6            | <0.001        | <1.0                                | <0.001            | 6.0             | 0.013 | 9.7                                     | 12.1                    | 7.1                                     | 223  | 254   193    | 3 <20   |       |
| Limits as          |                                        |                                         |                          |                 |               |                                     |                   |                 |       |                                         |                         |                                         | ,    | ,            |         |       |
| per                | 09                                     | 100                                     | 80                       | 80              | 5.0           | 0.                                  | 0.9               | 20              | 0.1   |                                         | 100                     |                                         |      | 2000         | 400     |       |
| NAAQS              |                                        |                                         |                          |                 |               |                                     |                   |                 |       | *************************************** |                         |                                         |      | Advanta      |         |       |
|                    |                                        |                                         |                          | Modifie         |               |                                     |                   |                 |       |                                         |                         |                                         |      |              |         |       |
|                    |                                        |                                         | Improved                 |                 | Solvent F     | -xtraction                          |                   |                 |       | ;                                       |                         | •                                       | _    | NDIR         | Indophe | enols |
| Test               | Gravir                                 | Gravimetric                             | West &                   | )<br> <br> <br> | followed      | followed by GC                      |                   | AAS/ICP         | _     | 4 VN                                    | UV Photometric          | tric                                    | Spec | Spectroscopy |         | Φ     |
| Methods            | Met                                    | Memod                                   | Geake                    |                 | Ana           | Analysis                            |                   |                 |       | <b>-</b>                                | 200                     | *************************************** | Ž    | ethod        | Method  | g     |
|                    |                                        |                                         |                          | eiser           |               |                                     |                   |                 |       |                                         |                         |                                         |      |              |         |       |
|                    |                                        |                                         |                          | Method          |               |                                     |                   |                 |       |                                         |                         |                                         |      |              |         |       |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.



# SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

|                    |                            | and the state of t |                             | Wind I       |                                        | Benzo(a)                                         |                  |                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>3</b>   | O <sub>3</sub><br>Lig/m <sub>3</sub> |      | O SH        | CO<br>CO                       | Ť                             |
|--------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|----------------------------------------|--------------------------------------------------|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------|------|-------------|--------------------------------|-------------------------------|
| Monitoring<br>Date | PM <sub>2.5</sub><br>µg/m³ | PM <sub>10</sub><br>µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SO <sub>2</sub><br>µg/m³    | NOx<br>µg/m³ | CeH <sub>s</sub><br>rig/m <sub>s</sub> | Particulate<br>Phase<br>µg/m³                    | Arsenic<br>µg/m³ | nickei<br>µg/m³ | ng/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _          | =                                    | =    | _           | =                              | hg/m³                         |
| - L-L-1977         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              | 2.14.00                                | SEPT                                             | SEPTEMBER 2015   | 2015            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |      |             |                                |                               |
| 1                  | 0 20                       | - 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143                         | 163          | 20.001                                 | <1.0                                             | <0.001           | 8.0             | 900.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.3        | 11.3                                 | 7.4  | 230 2       | 262 203                        | <20                           |
| 04.09.2015         | 30.0                       | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.4                        | 10.0         | VO.001                                 | <10                                              | <0.001           | 1.1             | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.1        | 10.9                                 | 9.9  | 213 2       | 245 182                        | <20                           |
| 05.09.2015         | 4.75                       | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.1                        | 17.7         | 70.07                                  | <1.0                                             | <0.001           | 0.6             | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2       | 12.6                                 | 8.2  | 220   2     | 253 190                        | <20                           |
| 11.09.2015         | 34.3                       | 64.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T.CT                        | 17.0         | <0.001                                 | <1.0                                             | <0.001           | 0.8             | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 13.1                                 |      |             |                                |                               |
| 12.09.2015         | 20.0                       | 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.3                        | 19.3         | <0.001                                 | <1.0                                             | <0.001           | 1.1             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 12.8                                 | 8.1  | $\dashv$    | -                              |                               |
| 10.09.2013         | 0.60                       | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 277                         | 17.6         | <0 001                                 | V 1 0                                            | <0.001           | 6.0             | 0,011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.3        | 11.4                                 | 7.4  | 232   2     | 263 201                        | <20                           |
| 19.09.2015         | 35.8                       | 27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,7,0                       | 0.00         | 1000                                   | 21.5                                             | <0.00            | 0.7             | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>   | 13.0                                 | 9.2  | 222 2       | 255   194                      | <20                           |
| 25.09.2015         | 35.0                       | 64.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.7                         | 20.3         | 100.07                                 | 2:1                                              | 100.0            | L               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╁          | 7.1                                  | L    | _           | 261   202                      | <20                           |
| 26.09.2015         | 38.2                       | 66.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.2                        | 19.7         | <0.001                                 | 0.1×                                             | 700.0>           | 0.0             | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5        | 77.7                                 | ╁    | -           | -                              |                               |
| Limits as          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              | 1                                      | ,                                                | (                | 6               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 6                                    |      | ĉ           | 2000                           | 400                           |
| per                | 09                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                          | 80           | 2.0                                    | 0.0                                              | 0.9              | 70              | 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 3                                    |      | 4           | 2                              | 2                             |
| NAAQS              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |                                        |                                                  |                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |      |             |                                |                               |
| Test<br>Methods    | Gravi                      | Gravimetric<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Improved<br>West &<br>Geake |              | Solvent l<br>followe<br>Ana            | Solvent Extraction<br>followed by GC<br>Analysis |                  | AAS/ICP         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>a</u> ⊧ | UV Photometric<br>method             | tric | Spect<br>Me | NDIR<br>Spectroscopy<br>Method | Indophenols<br>Blue<br>Method |
|                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Method       |                                        |                                                  |                  |                 | La commercial de la com |            |                                      | _    |             |                                |                               |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.



2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT

### APRIL TO SEPTEMBER 2015

## Outside Ambient Air Quality Monitoring Location: Amora

| _        |                           |                               |                   |            |            |            |            |            |            |            |            |            |            |           |      |       |                                               |  |  |  |  |
|----------|---------------------------|-------------------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------|-------|-----------------------------------------------|--|--|--|--|
|          | Ž                         | ng/m³                         |                   | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        |           | 400  |       | Indophe<br>nols<br>Blue<br>Method             |  |  |  |  |
|          | -                         | =                             |                   | 145        | 157        | 133        | 149        | 140        | 152        | 143        | 154        | 145        | 154        |           |      |       | , ddo                                         |  |  |  |  |
| S        | µg/m³                     | =                             |                   | 208        | 203        | 196        | 212        | 201        | 202        | 201        | 214        | 206        | 207        |           | 2000 |       | NDIR<br>Spectroscopy<br>Method                |  |  |  |  |
|          |                           | _                             |                   | 172        | 178        | 163        | 176        | 170        | 181        | 168        | 180        | 169        | 177        |           |      |       | Spe                                           |  |  |  |  |
|          |                           | =                             |                   | 5.8        | 9.9        | 7.2        | 7.4        | 5.3        | 7.1        | 6.4        | 5.8        | 6.2        | 6.0        |           |      |       | ətric                                         |  |  |  |  |
| ć        | ng/m³                     |                               |                   | 9.6        | 10.4       | 11.2       | 11.6       | 9.4        | 11.1       | 10.4       | 9.3        | 10.4       | 10.1       |           | 100  |       | UV Photometric method                         |  |  |  |  |
|          |                           | _                             |                   | 7.4        | 8.2        | 9.5        | 6          | 7.6        | 9.3        | 8.4        | 5 2        | 9.8        | 8.1        |           |      |       | NU A                                          |  |  |  |  |
|          |                           | µg/m³                         |                   | 0.014      | 0.015      | 0.012      | 0.014      | 0.016      | 0.012      | 0.013      | 0.015      | 0.011      | 0.013      |           | 1.0  |       |                                               |  |  |  |  |
|          |                           | µg/m³                         |                   | 1.3        | 1.5        | 1.1        | 1.3        | 1.0        | 1.2        | 1.4        | 1.3        | 1.5        | 1.1        |           | 20   |       | AAS/ICP                                       |  |  |  |  |
|          | Arcenic                   | hg/m³                         | <b>APRIL 2015</b> | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 6.0  |       |                                               |  |  |  |  |
| Benzo(a) | pyrene in                 | Particulate Mg/m³ Phase Hg/m³ | APF               | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 1.0  |       | xtraction<br>I by GC<br>ysis                  |  |  |  |  |
|          |                           | m/brl                         |                   | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  |       | Solvent Extraction followed by GC<br>Analysis |  |  |  |  |
|          | NOx<br>µg/m³              |                               |                   | 13.5       | 12.6       | 14.2       | 12.0       | 13.3       | 14.0       | 13.4       | 12.6       | 13.6       | 12.1       |           | 80   |       | Modifie d Jacob                               |  |  |  |  |
|          | SO <sub>2</sub><br>µg/m³  |                               |                   | 11.9       | 11.2       | 11.5       | 6.6        | 11.1       | 11.9       | 11.3       | 9.8        | 11.6       | 10.2       |           | 80   |       | Improved<br>West &<br>Geake                   |  |  |  |  |
|          | PM <sub>10</sub><br>µg/m³ |                               |                   | 46.4       | 47.9       | 43.9       | 45.4       | 46.9       | 48.5       | 49.9       | 45.5       | 47.0       | 49,4       |           | 100  |       | Gravimetric<br>Method                         |  |  |  |  |
|          |                           | ng/m³                         |                   | 23.9       | 20.2       | 23.2       | 25.1       | 22.2       | 21.0       | 23.7       | 25.9       | 24.2       | 23.4       |           | 09   |       | Gravii                                        |  |  |  |  |
|          | Monitoring                | Date                          |                   | 01.04.2015 | 02.04.2015 | 08.04.2015 | 09.04.2015 | 15.04.2015 | 16.04.2015 | 22.04.2015 | 23.04.2015 | 29.04.2015 | 30.04.2015 | Limits as | per  | NAAQS | Test                                          |  |  |  |  |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.



# SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

|          | Ĭ         | hg/m³                         |          | <20    | <20        | <20        | <20        | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <20               | 00/        | 027      | 720        |            | 400       |        |       | Indophe<br>nols<br>Blue<br>Method                |
|----------|-----------|-------------------------------|----------|--------|------------|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|----------|------------|------------|-----------|--------|-------|--------------------------------------------------|
|          |           | =                             |          | 138    | 141        | 126        | 142        | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 145               | 100        | 147      | 14/        | -          |           |        |       | , do                                             |
| င္ပ      | mg/m³     | =                             |          | 197    | 192        | 185        | 201        | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196               | 2 5        | 120      | 703        |            | 2000      |        |       | NDIR<br>Spectroscopy<br>Method                   |
|          |           |                               |          | 163    | 169        | 154        | 171        | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 172               | 1 7        | בין      | 1/1        |            |           |        |       | ਲੱ<br>                                           |
|          |           | =                             |          | 9.9    | 7.2        | 8.3        | 6.9        | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.7               | 7 0        |          | 6.3        |            |           |        |       | netric<br>d                                      |
| ်<br>ဝိ  | mg/m³     | =                             |          | 10.1   | 11.2       | 12.3       | 10.8       | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.0               | יין איני   | 11.2     | 10.4       |            | 100       | )<br>} |       | UV Photometric<br>method                         |
|          |           | _                             |          | 8.1    | 9.3        | 10.1       | 8.2        | 9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 7               | 1.         | 9.1      | 8.4        |            |           |        |       | 3                                                |
|          | 1         | Lead<br>µg/m³                 |          | 0.012  | 0.014      | 0.010      | 0.013      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.011             | 0.014      | 0.010    | 0.012      |            | 7         | ?      |       | 0                                                |
|          | :         | Nickel<br>µg/m³               |          | 0 1    | 2          | 1.3        | 0.0        | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.7               | 1.3        | 1.0      | 0.8        |            | 20        | 3      |       | AAS/ICP                                          |
|          | •         | Arsenic<br>µg/m³              | MAY 2015 | 70.001 | 70.00      | <0.02      | 70.001     | 100.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.001<br>( 0.001 | <0.001     | <0.001   | <0.001     |            | 9         | 9.0    |       |                                                  |
| Benzo(a) | nyrene in | Particulate hg/m³ Phase hg/m³ | MA       | 710    | 7 7        | 71.0       | 7 7        | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1.0              | <1.0       | <1.0     | <1.0       |            | •         | ?      |       | Solvent Extraction<br>followed by GC<br>Analysis |
|          |           | CeHe<br>µg/m³                 | 15000    | 000    | <0.001     | 70.007     | 100.00     | <0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00 | <0.001            | <0.001     | <0.001   | <0.001     |            |           | o.c    |       |                                                  |
| -        |           | NOx<br>µg/m³                  |          | 0      | 12.9       | 12.4       | 7.01       | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.0              | 13.4       | 12.8     | 13.1       | 1.04       | 6         | 08     |       | Modifie d d S & Hochh eiser                      |
|          |           | SO <sub>2</sub><br>µg/m³      |          | ,      | 11.2       | 10.5       | 10.8       | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.6               | 11.2       | 10.6     | 113        | C. 4.4     | ;         | 08     |       | Improved<br>West &<br>Geake                      |
|          |           | PM <sub>10</sub><br>µg/m³     | Lin      |        | 44.6       | 46.1       | 42.1       | 43.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.1              | 46.7       | 48.1     | 737        | 45.7       |           | 100    |       | Gravimetric<br>Method                            |
|          |           | PM <sub>2.5</sub><br>µg/m³    | LL SATE  |        | 22.7       | 19.0       | 22.0       | 23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.0              |            |          |            | 7.47       |           | 09     |       | Grav                                             |
|          |           | Monitoring<br>Date            |          |        | 04.05.2015 | 05.05.2015 | 11.05.2015 | 12.05.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.05.2015        | 10.05.2015 | 202.2012 | 23.03.2013 | 26.05.2015 | Limits as | per    | NAAQS | Test                                             |

\*\* As per National Ambient Air Quality Standards - G. S. R. 826(E) notification dated 16.11.2009.

## 2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.)

ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

|               | PM4             | SO     | XON          |                    | Benzo(a)<br>pyrene in         | Arsenic   | Nickel  | - Pad |             | O <sub>3</sub><br>µg/m³ |     |      | CO<br>CO     |     | Ť                |
|---------------|-----------------|--------|--------------|--------------------|-------------------------------|-----------|---------|-------|-------------|-------------------------|-----|------|--------------|-----|------------------|
| hg/m³ hg/m³ l |                 | µg/m³  | µg/m³        | rig/m³             | Particulate<br>Phase<br>μg/m³ | µg/m³     | hg/m³   | ng/m³ | Parisin     |                         | =   |      | =            |     | µm3              |
|               |                 |        |              |                    | JUL .                         | JUNE 2015 |         |       |             |                         |     |      |              |     |                  |
| 24.0 48.1     | _               | 12.1   | 14.1         | <0.001             | <1.0                          | <0.001    | 8.0     | 0.010 | 9.3         | 11.2                    | 7.1 | 181  | 205          | 152 | <20              |
| 20.3 47.3     |                 | 11.3   | 13.0         | <0.001             | 0.1>                          | <0.001    | 1.0     | 0.012 | 10.1        | 11.9                    | 8.2 | 177  | 200          | 147 | <20              |
| 23.3 44.4     |                 | 10.2   | 12.7         | <0.001             | <1.0                          | <0.001    | 0.7     | 600.0 | 8.4         | 10.8                    | 6.5 | 162  | 193          | 132 | <20              |
| 25.2 46.3     |                 | 12.0   | 14.3         | <0.001             | <1.0                          | 100.0>    | 1.1     | 0.010 | 6.3         | 11.1                    | 7.3 | 179  | 209          | 148 | <20              |
| 22.3 50.1     |                 | 10.4   | 12.6         | <0.001             | <1.0                          | <0.001    | 0.9     | 0.008 | 8.7         | 9.6                     | 5.8 | 169  |              | 139 | <20              |
| 21.1   47.9   |                 | 12.0   | 14.2         | <0.001             | <1.0                          | <0.001    | 0.7     | 0.012 | 8.3         | 10.3                    | 6.2 | 178  | 204          | 140 | <20              |
| 23.8   49.3   |                 | 11.4   | 13.7         | <0.001             | <1.0                          | <0.001    | 1.1     | 0.008 | 8.0         | 10.7                    | 7.8 | 167  | 198          | 130 | <20              |
| 21.9 44.9     |                 | 6.6    | 11.9         | <0.001             | <1.0                          | <0.001    | 6'0     | 0.012 | 9.7         | 11.2                    | 7.1 | 182  | 211          | 153 | <20              |
| 24.4 46.4     |                 | 10.6   | 12.3         | <0.001             | <1.0                          | <0.001    | 9.0     | 600.0 | 2.8         | 10.3                    | 6.3 | 162  | 194          | 134 | <20              |
| 21.9 48.3     |                 | 11.2   | 13.5         | <0.001             | <1.0                          | <0.001    | 1.1     | 0.01  | 10.3        | 12                      | 7.9 | 174  | 205          | 142 | <20              |
|               |                 |        |              |                    |                               |           |         |       |             |                         |     |      |              |     | Y                |
| 100           |                 | 80     | 80           | 5.0                | 1.0                           | 6.0       | 20      | 1.0   |             | 100                     |     |      | 2000         |     | 400              |
|               |                 |        |              |                    |                               |           |         |       |             |                         |     |      |              |     |                  |
|               |                 |        | Modifie<br>d |                    |                               |           |         |       |             |                         |     |      |              |     |                  |
|               | <u><u> </u></u> | peved  |              | Solvent Extraction | xtraction                     |           |         |       | -           |                         |     | _    | NDIR         |     | Indophe          |
| Mothod W      | <u> </u>        | West & | ∞ర           | followed by GC     | by GC                         | •         | AAS/ICP |       | )<br>)<br>, | ov Protometric          |     | Spec | Spectroscopy |     | Sion             |
| •             | ڻ<br>ص          | Geake  | Hochh        | Analysis           | ysis                          |           |         |       | =           | 0000                    |     | ≥    | [ethod       |     | Mothod<br>Mothod |
|               |                 |        | eiser        |                    |                               |           |         |       |             |                         |     |      |              |     | noinai           |
|               |                 |        | Method       |                    |                               |           |         |       |             |                         |     |      |              |     |                  |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

# SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase - I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

|                    |                                            |                    |         |            |            |            |            | _          |            | _          | _          |           |          | _     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |                |         | _ |        |
|--------------------|--------------------------------------------|--------------------|---------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|----------------|---------|---|--------|
|                    | NH <sub>3</sub><br>µg/m³                   | !                  | <20     | <20        | <20        | <20        | <20        | <20        | /20        |            | 720        | 400       | )<br>}   |       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indophe | slou               | Blue           | Method  |   |        |
|                    |                                            |                    | 163     | 153        | 142        | 160        | 145        | 154        | 173        | 217        | 707        |           |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | \<br>\<br>\        | ,<br>,         | 3       |   |        |
| တွ <sup>်နို</sup> |                                            |                    | 213     | 208        | 201        | 217        | 206        | 212        | 200        | 3          | 213        | 2000      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Spectroscopy       | Mothod         | O DOM   |   |        |
|                    |                                            |                    | 188     | 180        | 173        | 193        | 176        | 185        | 77         | 7 7        | 131        |           |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    | <u>.</u>       |         |   |        |
|                    | =                                          |                    | 6.8     | 5.7        | 9.7        | 6.4        | 7          | 1          | ין<br>קר   | 4:         | 6.3        |           |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | etric              | ~~             |         |   |        |
| ပ်                 | <b>=</b>                                   | *********          | 10.6    | 10.9       | 11.5       | 11.8       | 10 5       | 2 0        |            | 0.11       | 10.4       | 400       | 3        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | JV Photometric     | method         |         |   | Lussi  |
|                    | -                                          |                    | 8.1     | 7.8        | 9.3        | 8.8        | α          | 2          | ţ.         | 0.         | 8.4        |           |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | <u></u>            |                |         |   |        |
|                    | Lead<br>µg/m³                              | s write            | 0.008   | 0.010      | 0.006      | 0.005      | 7000       | 30.0       | 0.010      | 0.000      | 0.007      | *         | <u>-</u> |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ,                  | <b>1</b>       |         |   |        |
|                    | Nickel<br>µg/m³                            | Line of the second | 7.      | 0.8        | 0.6        | 6.0        | ,          | + 0        | 0.8        | 0.6        | 9.4        | ç         | 2        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0                  | AAS/ICF        |         |   |        |
|                    | Arsenic<br>µg/m³                           | JULY 2015          | <0.00   | <0.00      | <0.001     | 40.00v     | 1000       | \$0.00T    | <0.001     | <0.001     | <0.001     | (         | o.       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |                |         |   |        |
| Benzo(a)           | Pyrene in Parsenic Particulate Phase Hg/m³ | IDF                | 7.1     | 2 7        | 7 7        | 0,17       | 217        | 21.0       | <1.0       | <1.0       | <1.0       |           | 0,1      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Solvent Extraction | followed by GC | lysis   |   |        |
|                    | C <sub>6</sub> H <sub>6</sub><br>µg/m³     |                    | 100.00  | 70.001     | 1000       | 70.007     | 20.001     | <0.001     | <0.001     | <0.001     | <0.001     | 1         | 5.0      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |                |         |   |        |
|                    | NOx<br>µg/m³                               |                    | , ,     | 13.0       | 14.2       | 13.1       | 13.0       | 14.1       | 15.0       | 14.5       | 12.7       |           | 08       |       | Modifie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | Jacob              |                | Hochh   |   | Method |
| · ·                | SO <sub>2</sub><br>µg/m³                   |                    |         | 11.9       | 12.0       | 10.9       | 11./       | 12.5       | 13.2       | 12.1       | 10.6       |           | 80       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Improved           | West &         | Geake   |   | ••••   |
|                    | PM <sub>10</sub><br>µg/m³                  |                    | 1       | 20.5       | 49.6       | 46.3       | 48.3       | 52.2       | 50.2       | 51.4       | 47.1       |           | 100      |       | - Control of the Cont |         | است م              | Gravimenic     | 0013    |   |        |
|                    | PM <sub>2.5</sub><br>µg/m³                 |                    | Many By | 23.1       | 19.4       | 22.4       | 24.3       | 21.4       | 20.2       | 22.9       | 20.8       |           | 09       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | (                  | פֿנפּאַ        | ME      |   |        |
|                    | Monitoring<br>Date                         |                    |         | 06.07.2015 | 07.07.2015 | 13.07.2015 | 14.07.2015 | 20.07.2015 | 21 07 2015 | 27 07 2015 | 28 07 2015 | Limits as | per      | NAAQS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ŀ                  | lest           | Methods |   |        |

\*\* As per National Ambient Air Quality Standards - G. S. R. 826(E) notification dated 16.11.2009.

# SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

|                         | ng/m³                         |                                         | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        |           | 400                                     | Indophe<br>nols<br>Blue<br>Method                |
|-------------------------|-------------------------------|-----------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------------------------------------|--------------------------------------------------|
|                         | =                             |                                         | 142        | 147        | 134        | 152        | 137        | 146        | 135        | 144        | -         | *************************************** | , do                                             |
| co<br>mg/m³             | =                             |                                         | 196        | 205        | 189        | 205        | 194        | 202        | 194        | 207        | 1         | 2000                                    | NDIR<br>Spectroscopy<br>Method                   |
|                         | _                             |                                         | 168        | 174        | 164        | 189        | 167        | 176        | 165        | 176        | ì         |                                         | Spe                                              |
|                         |                               |                                         | 5.7        | 6.1        | 5.8        | 6.0        | 5.2        | 6.3        | 6.0        | 5.9        |           |                                         | etric                                            |
| O <sub>3</sub><br>µg/m³ | =                             |                                         | 9.5        | 10.2       | 9.6        | 10.7       | 9.6        | 10.4       | 10.1       | 6.6        |           | 100                                     | UV Photometric method                            |
|                         | ·                             | - Andrews                               | 7.4        | 8.2        | 9'2        | 8.1        | 6.9        | 8.4        | 7.6        | 7.2        |           |                                         | NO P                                             |
| 700                     | hg/m³                         | THE | 90000      | 0.008      | 0.004      | 0.006      | 0.008      | 0.005      | 0.003      | 0.006      |           | 1.0                                     |                                                  |
| Nickel                  | m/grl                         |                                         | 0.3        | 0.4        | 0.5        | 0.7        | 0.3        | 0.2        | 9.0        | 0.3        |           | 20                                      | AAS/ICP                                          |
| Arsenic                 | µ/grd                         | AUGUST 2015                             | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 0.9                                     |                                                  |
| Benzo(a)<br>pyrene in   | Particulate morns Phase µg/m³ | AUGI                                    | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 1.0                                     | xtraction<br>by GC<br>/sis                       |
| Cell                    | m/brl                         |                                         | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0                                     | Solvent Extraction<br>followed by GC<br>Analysis |
| XON                     | µg/m³                         |                                         | 14.7       | 15.3       | 14.2       | 14.9       | 15.2       | 16.1       | 15.6       | 13.8       |           | 80                                      | Modifie d A Jacob & A Hochh eiser Method         |
| SO,                     | µg/m³                         |                                         | 12.8       | 13.6       | 11.8       | 12.6       | 13.4       | 14.1       | 13.0       | 11.5       |           | 80                                      | Improved<br>West &<br>Geake                      |
| PM40                    | rig/m³                        |                                         | 51.9       | 52.3       | 48.2       | 50.3       | 54.2       | 51.9       | 53.1       | 48.8       |           | 100                                     | Gravimetric<br>Method                            |
| PM25                    | µg/m³                         |                                         | 22.6       | 20.8       | 23.8       | 25.7       | 23.1       | 21.6       | 24.3       | 22.2       |           | 09                                      | Gravir                                           |
| Monitorina              | Date                          |                                         | 03.08.2015 | 04.08.2015 | 12.08.2015 | 13.08.2015 | 19.08.2015 | 20.08.2015 | 24.08.2015 | 25.08.2015 | Limits as | per<br>NAAQS                            | Test<br>Methods                                  |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

| M K S K Power I from knowledge |  |
|--------------------------------|--|
| u.                             |  |

# SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

| _           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |            | -,         |            | 1          | [          | η-         | 1         | т          |         |         |                    |                |          |       | ٦                                     |
|-------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|---------|---------|--------------------|----------------|----------|-------|---------------------------------------|
| Ä           | m/bd                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <20    | <20        | <20        | <20        | <20        | <20        | 000        | 00/        | 7.4       | Τ.,        |         | Indophe | slou               | Blue           | Method   |       |                                       |
|             | =                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146    | 151        | 138        | 156        | 141        | 135        | C 7 -      | 717        | nc T      |            |         |         | ,,,,,,             | ر<br>م<br>م    | 3        |       |                                       |
| ng/m³       | =                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 202    | 211        | 195        | 211        | 200        | ╀          | ╬          | -          | $\dashv$  | 11.3       |         |         | AIUNI<br>AIUNI     | Specifoscopy   | Meric    |       |                                       |
|             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173    | 181        | 169        | 184        | 172        | 109        | 1 100      | 1/0        | 181       |            | •       |         | Ċ                  | <u>ア</u><br>—  |          |       |                                       |
|             | =                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8    | 7.7        | 6.2        | 5.8        | 7.3        | 5 0        | 2 .        | 0.0        | 0.0       |            |         |         | netric             | ם.             |          |       |                                       |
| o³<br>hg/m³ | =                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.6   | 11,4       | 10.5       | 9.6        | 11 6       | 7          | 77.7       | ν.         | 10.4      | 8.8        |         |         | UV Photometric     | method         |          |       |                                       |
|             | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.4    | 9.0        | 8.2        | 7.5        | 0 2        | 3 0        | ו<br>נת    | ç.)        | 8.1       |            |         |         | <u>^</u>           | 1              |          |       |                                       |
| -           | Lead<br>µg/m³                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003  | 0.005      | 0.002      | 0.004      | 2000       | 0.00       | 0.003      | 0.006      | 0.003     | 0.004      |         |         |                    | n              |          |       |                                       |
|             | Nickel<br>µg/m³                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5    | 0.2        | 0.1        | 20         | 9 0        | 0.0        | 0.4        | 0.3        | 0.1       | 0.3        |         |         | :                  | AAS/ICP        |          |       |                                       |
| •           | Arsenic<br>µg/m³                       | SEPTEMBER 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00  | <0.001     | <0.001     | 100.07     | 100.0      | <0.001     | <0.001     | <0.001     | <0.001    | <0.001     |         |         |                    |                |          |       |                                       |
| Benzo(a)    | Particulate<br>Phase<br>µg/m³          | SEPTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 012    | 2:57       | 71.0       | 0.1.       | 0,17       | <1.0       | <1.0       | <1.0       | <1.0      | <1.0       |         |         | Solvent Extraction | followed by GC | Analysis |       |                                       |
| . Liver     | C <sub>6</sub> H <sub>6</sub><br>µg/m³ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.001 | 70.007     | 70.001     | 1000       | 700'0>     | <0.001     | <0.001     | <0.001     | <0.001    | <0.001     |         |         | Solvent E          | follower       | Ana      |       | -                                     |
| ***         | NOx<br>hg/m³                           | - control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0 0  | 12.0       | 14.4       | 1.4.1      | 13.6       | 14.3       | 15.3       | 13.9       | 14.8      | 13.7       | Modifie | ס       |                    |                | Hochh    | eiser | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|             | SO <sub>2</sub><br>µg/m³               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 11./       | 12.5       | 17.7       | 11.5       | 12.3       | 13.2       | 11.9       | 12.2      | 11.3       |         |         | Improved           | West &         | Geake    |       |                                       |
|             | PM <sub>1g</sub><br>µg/m³              | - Indiana - Indi | , 02   | 53.1       | 53.5       | 49.7       | 51.4       | 52.1       | 55.6       | 54.3       | 50.0      | 53.6       |         |         |                    | Gravimetric    | Method   |       |                                       |
|             | PM <sub>2.5</sub><br>µg/m³             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 24.4       | 22.5       | ╛          | 27.5       | 24.7       | L          |            | L         | 23.4       |         |         | (                  | Grav           | <br>⊠    |       |                                       |
|             | Monitoring<br>Date                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 01.09.2015 | 07.09.2015 | 08.09.2015 | 14.09.2015 | 15.09.2015 | 21 09 2015 | 22.00.2022 | 202.20.22 | 29.09.2013 | 27.07.5 |         |                    | Test           | Methods  |       |                                       |

161

\*\* As per National Ambient Air Quality Standards - G. S. R. 826(E) notification dated 16.11.2009.



2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### **TABLE - 4 (E)**

Outside Ambient Air Quality Monitoring

Location: Sonsari

|                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ı          |            |            |            |            |            | ì          |            | $\neg$     |           |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d١                 |                |          |  |
|-----------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|----------|--|
| i z                   | µg/m³                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | ,         | 400  |       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indophe            | Sion           | Method   |  |
|                       | =                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140        | 152        | 126        | 139        | 156        | 132        | 150        | 141        | 133        | 139        |           |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Ado            |          |  |
| co<br>co              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 205        | 210        | 197        | 203        | 220        | 198        | 214        | 206        | 191        | 212        |           | 2000 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NDIR               | Spectroscopy   | Method   |  |
|                       | _                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 168        | 180        | 129        | 170        | 183        | 161        | 182        | 170        | 165        | 173        |           |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Spe            |          |  |
|                       | =                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8        | 5.8        | 7.1        | 6.3        | 5.7        | 6.0        | 7.8        | 6.2        | 5.9        | 5.2        |           |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  | etric          |          |  |
| O <sub>3</sub>        | =                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2       | 9'6        | 11.1       | 10.5       | 9.4        | 10.2       | 11.4       | 11.1       | 10.7       | 9.8        |           | 100  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                  | UV Photometric | mernod   |  |
|                       | _                                         | Address of the state of the sta | 8.3        | 1.7        | 9.6        | 8.1        | 8.7        | 8.3        | 9.6        | 8.7        | 8.1        | 7.6        |           |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                  | >              | _        |  |
| 700                   | read<br>hg/m³                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.015      | 0.013      | 0.015      | 0.012      | 0.014      | 0.015      | 0.012      | 0.015      | 0.013      | 0.012      |           | 0.   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |          |  |
| I CACIN               | nickei<br>µg/m³                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2        | 1.4        | 1.1        | 1.3        | 1.4        | 1.1        | 1.2        | 1.0        | 1.3        | 1.4        |           | 20   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AAS/ICP        |          |  |
| ,                     | Arsenic<br>µg/m³                          | <b>APRIL 2015</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 0.9  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |          |  |
| Benzo(a)<br>pyrene in | Particulate Particulate Phase pg/m³ pg/m³ | APF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 0:   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | xtraction          | bv GC          | ysis     |  |
| -                     | hg/m³                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solvent Extraction | followed by GC | Analysis |  |
|                       | ng/m³                                     | The state of the s | 12.9       | 13.5       | 11.8       | 12.4       | 12.1       | 13.6       | 14.5       | 12.8       | 12.0       | 12.6       |           | 8    |       | Modifie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                | Hochh    |  |
| 6                     | sO <sub>2</sub><br>µg/m³                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.8       | 11.5       | 10.2       | 10.6       | 9.7        | 11.6       | 11.3       | 11.0       | 9.6        | 10.8       |           | 80   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Improved           | West &         | Geake    |  |
|                       | rw <sub>10</sub>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.2       | 49.2       | 47.7       | 45.8       | 48.4       | 50.7       | 49.1       | 49.7       | 46.8       | 49.5       |           | 100  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Gravimetric    | pou      |  |
|                       | PM2.5<br>µg/m³                            | AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.2       | 22.2       | 24.0       | 21.3       | 23.2       | 23.7       | 22.4       | 23.5       | 21.2       | 23.7       |           | 09   |       | And and a second a |                    | Gravii         | Met      |  |
|                       | Monitoring<br>Date                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01.04.2015 | 02.04.2015 | 08.04.2015 | 09.04.2015 | 15.04.2015 | 16.04.2015 | 22.04.2015 | 23.04.2015 | 29.04.2015 | 30.04.2015 | Limits as | per  | NAAQS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Test           | Methods  |  |

### MKSK Power from knowledge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT

APRIL TO SEPTEMBER 2015

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

| Ś                               | ČN     |                                   | Arsenic  | Nickel  | - Fead | <b>1</b>  | O <sub>3</sub><br>µg/m³ |          | س/brl<br>Oک          |      | ž           |
|---------------------------------|--------|-----------------------------------|----------|---------|--------|-----------|-------------------------|----------|----------------------|------|-------------|
| hg/m³ µg/m³                     | ng/m³  | Particulate 'mg/m³ Phase µg/m³    | m/bd/    | hg/m³   | m/bri  | _         |                         |          |                      | =    | mg/m³       |
|                                 |        | MA                                | MAY 2015 |         |        |           |                         |          |                      |      |             |
| 11.1   13.1                     | <0.001 | <1.0                              | <0.001   | 1.0     | 0.012  | 9.1       | 11.3 7                  | 7.9 159  | 9 192                | 129  | <20         |
| 10.9 12.8                       | <0.001 | <1.0                              | <0.001   | 0.8     | 0.010  | 8.2       |                         | $\dashv$ | $\dashv$             | 141  | <20         |
| 11.3 13.1 <                     | <0.001 | <1.0                              | <0.001   | 1.2     | 0.013  | $\exists$ |                         |          | $\dashv$             | 115  | <20         |
| 12.1 14.0 <                     | <0.001 | <1.0                              | <0.001   | 6.0     | 0.011  | 9.3       | 11.4                    | 7.2 162  | -                    | 128  | <20         |
| 10.1   12.8   <0                | <0.001 | <1.0                              | <0.001   | 1.1     | 0.012  | 8.1       |                         | $\dashv$ | $\dashv$             | 145  | <20         |
| 11.1 13.3 <                     | <0.001 | <1.0                              | <0.001   | 1.0     | 0.010  | 9.5       | 11.2 7                  | 1        | -                    | 121  | <20         |
|                                 | <0.001 | <1.0                              | <0.001   | 0.7     | 0.013  | 7.8       |                         |          | _                    | 139  | <20         |
| 11.3   13.1   <0                | <0.001 | <1.0                              | <0.001   | 6.0     | 0.011  | 8.9       | 10.7 6                  | 6.7 163  | 3 197                | 125  | <20         |
|                                 |        |                                   |          |         |        |           | •                       |          |                      |      | •           |
| 08 08                           | 5.0    | 0.                                | 0.9      | 20      | 0.     |           | 100                     |          | 2000                 |      | 400         |
|                                 |        |                                   |          |         |        |           |                         |          |                      | Ĭ    |             |
| Modifie<br>d                    |        |                                   |          |         |        |           |                         |          |                      |      | lactor      |
| Improved Jacob Sc<br>West & & f | ollowe | Solvent Extraction followed by GC | 7        | AAS/ICP |        | UV P      | UV Photometric          |          | NDIR<br>Spectroscopy | copy | nols<br>and |
| Hochh                           | Ā      | Analysis                          |          |         |        | =         | מפו                     |          | Metho                | 73   | Method      |
| eiser                           |        |                                   |          |         |        |           |                         |          |                      |      |             |
| Method                          |        |                                   |          |         |        |           |                         |          |                      |      |             |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.



## SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT

APRIL TO SEPTEMBER 2015

|                       |                                 |           |            |            | ,          |            |            |            |            |            |            |            |           |      |       |              |                                   |                                                                                                |                 |
|-----------------------|---------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------|-------|--------------|-----------------------------------|------------------------------------------------------------------------------------------------|-----------------|
|                       | nra <sub>3</sub><br>µg/m³       |           | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        |           | 400  |       | lndonha      | slon                              | Method                                                                                         | מופה            |
|                       | =                               |           | 137        | 149        | 123        | 136        | 153        | 130        | 147        | 133        | 138        | 150        |           |      |       |              | ydo                               | :                                                                                              |                 |
| co<br>CO              | =                               |           | 203        | 212        | 199        | 202        | 213        | 200        | 216        | 206        | 196        | 211        |           | 2000 |       |              | NDIR<br>Spectroscopy              | Method                                                                                         |                 |
|                       | *******                         |           | 166        | 179        | 158        | 169        | 182        | 162        | 180        | 170        | 165        | 180        |           |      |       |              | Spe                               |                                                                                                |                 |
|                       | =                               |           | 8.9        | 5.8        | 6'9        | 7.5        | 5.6        | 6.7        | 7.1        | 5.9        | 6.1        | 7.0        |           |      |       |              | etric                             |                                                                                                |                 |
| O <sub>3</sub>        | =                               |           | 10.3       | 9'6        | 10.2       | 11.7       | 11.2       | 10.8       | 11.7       | 8.6        | 10.5       | 10.1       |           | 100  |       |              | UV Photometric                    | merioa                                                                                         |                 |
|                       |                                 |           | 8.4        | 7.6        | 8.1        | 6          | 7.6        | 8.3        | 9.1        | 2.8        | 8.5        | 8.0        |           |      |       |              | UV.                               | _                                                                                              |                 |
|                       | hg/m³                           |           | 0.010      | 800'0      | 0.010      | 0.012      | 0.010      | 0.009      | 0.010      | 0.012      | 0.010      | 0.008      |           | 1.0  |       |              | •                                 |                                                                                                |                 |
| I CACIN               | ulckei<br>µg/m³                 |           | 6.0        | 1.1        | 1.0        | 0.8        | 1.1        | 6.0        | 9.0        | 1.0        | 8.0        | 1.0        |           | 20   |       |              | AAS/ICP                           |                                                                                                |                 |
| V CON                 | pg/m³                           | JUNE 2015 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 6.0  |       |              |                                   |                                                                                                |                 |
| Benzo(a)<br>pyrene in | Particulate /<br>Phase<br>µg/m³ | nr        | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 1.0  |       |              | extraction<br>by GC               | ysis                                                                                           |                 |
|                       | Leng<br>hg/m³                   |           | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  |       |              | Solvent Extraction followed by GC | Analysis                                                                                       |                 |
| Š                     | mOX<br>hg/m³                    |           | 14.0       | 13.7       | 14.2       | 12.8       | 13.7       | 14.0       | 13.1       | 12.7       | 13.6       | 14.8       |           | 80   |       | Modifie<br>d |                                   |                                                                                                | eiser<br>Method |
| S                     | sO <sub>2</sub><br>µg/m³        |           | 12.2       | 11.3       | 12.4       | 10.9       | 11.2       | 12.2       | 11.8       | 10.8       | 11.2       | 12.9       |           | 80   |       |              | Improved<br>West &                | Geake                                                                                          |                 |
| 100                   | rw10<br>µg/m³                   |           | 49.0       | 51.0       | 49.5       | 47.6       | 50.2       | 52.5       | 50.9       | 51.5       | 49.2       | 52.0       |           | 100  |       |              | Gravimetric                       |                                                                                                |                 |
|                       | r wz.5<br>µg/m³                 |           | 21.6       | 22.6       | 24.4       | 21.7       | 24.9       | 24.1       | 22.8       | 23.9       | 21.6       | 24.4       |           | 09   |       |              | Gravii                            | <u>1</u> 0<br>12<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 |                 |
| 200                   | Date                            |           | 01.06.2015 | 02.06.2015 | 08.06.2015 | 09.06.2015 | 15.06.2015 | 16.06.2015 | 22.06.2015 | 23.06.2015 | 29.06.2015 | 30.06.2015 | Limits as | per  | NAAQS |              | Test                              | Mellods                                                                                        |                 |

### Power from knowledge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT

APRIL TO SEPTEMBER 2015

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

| Ÿ                                       | hg/m³                           |           | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        |           | 400  |                                       | Indophe<br>nols<br>Blue<br>Method             |
|-----------------------------------------|---------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------|---------------------------------------|-----------------------------------------------|
|                                         | =                               |           | 153        | 141        | 150        | 144        | 152        | 131        | 143        | 141        |           |      |                                       | opy                                           |
| CO<br>CO<br>fig/m³                      |                                 |           | 221        | 206        | 213        | 209        | 225        | 198        | 202        | 212        |           | 2000 |                                       | NDIR<br>Spectroscopy<br>Method                |
|                                         | _                               |           | 184        | 176        | 182        | 178        | 188        | 167        | 177        | 182        |           |      |                                       | ď                                             |
| *************************************** | =                               |           | 7.1        | 6.3        | 7.0        | 5.8        | 6.1        | 7.3        | 8.2        | 5.3        |           |      |                                       | netric<br>J                                   |
| O3<br>Hg/m3                             | =                               |           | 11.3       | 10.4       | 11.8       | 9.6        | 10.4       | 11.1       | 12.1       | 10.2       |           | 100  |                                       | UV Photometric<br>method                      |
|                                         | _                               |           | 9.2        | 8.1        | 9.3        | 7.5        | 8.1        | 9.0        | 10.1       | 7.4        |           |      |                                       | 20<br>O                                       |
|                                         | read<br>hg/m³                   |           | 900.0      | 600.0      | 0.007      | 0.004      | 200.0      | 600.0      | 900.0      | 0.008      |           | 1.0  | A A A A A A A A A A A A A A A A A A A | 0                                             |
| Nickel                                  | nickei<br>hg/m³                 |           | 0.7        | 0.5        | 0.8        | 0.4        | 0.8        | 0.3        | 0.7        | 0.5        |           | 20   |                                       | AAS/ICP                                       |
| Areanic                                 | Hg/m <sup>3</sup>               | JULY 2015 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 0.9  |                                       | `                                             |
| Benzo(a)<br>pyrene in                   | Particulate '<br>Phase<br>ug/m³ | 3         | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 1.0  |                                       | ivent Extraction<br>illowed by GC<br>Analysis |
| 1                                       | င်ဂေန့<br>µg/m³                 |           | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  |                                       | Solvent Extraction followed by GC<br>Analysis |
| Š                                       | ng/m³                           |           | 13.2       | 12.9       | 13.4       | 12.0       | 13.0       | 13.2       | 12.7       | 11.9       |           | 80   |                                       | Modifie d Jacob & Hochh eiser Method          |
| 9                                       | SO23                            |           | 11.3       | 10.4       | 11.5       | 10.0       | 10.3       | 11.3       | 10.9       | 6.6        |           | 80   |                                       | Improved<br>West &<br>Geake                   |
| O.W.                                    | rim <sub>19</sub><br>µg/m³      |           | 47.2       | 49.2       | 48.5       | 51.2       | 48.4       | 50.7       | 49.1       | 49.7       |           | 100  |                                       | Gravimetric<br>Method                         |
| Z C                                     | rw <sub>2.5</sub><br>µg/m³      |           | 20.5       | 23.6       | 22.3       | 20.6       | 22.5       |            |            | 22.8       |           | 09   |                                       | Gravi                                         |
|                                         | Monitoring<br>Date              |           | 06.07.2015 | 07.07.2015 | 13.07.2015 | 14.07.2015 | 20.07.2015 | 21.07.2015 | 27.07.2015 | 28.07.2015 | Limits as | per  | NAACS                                 | Test                                          |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009

### KSK Kowedge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

|                    |                |                            |                             | was writing a                   | =                             | Benzo(a)<br>pyrene in                            |                   |                 | 1     |      | O <sub>3</sub>           |       | <b>1</b> | co<br>co                       |     |                                   |
|--------------------|----------------|----------------------------|-----------------------------|---------------------------------|-------------------------------|--------------------------------------------------|-------------------|-----------------|-------|------|--------------------------|-------|----------|--------------------------------|-----|-----------------------------------|
| Monitoring<br>Date | FM2.5<br>µg/m³ | FIM <sub>10</sub><br>µg/m³ | sO <sub>2</sub><br>µg/m³    | nOx<br>µg/m³                    | Cene<br>µg/m³                 | Particulate Arsenic<br>Phase µg/m³<br>µg/m³      | hg/m <sup>3</sup> | nickei<br>µg/m³ | µg/m³ | _    |                          | =     | _        | -                              |     | hg/m³                             |
|                    | -              |                            |                             |                                 |                               | AUG                                              | AUGUST 2015       |                 |       |      |                          |       |          |                                |     |                                   |
| 03.08.2015         | 22.2           | 49.1                       | 12.1                        | 14.0                            | <0.001                        | <1.0                                             | <0.001            | 0.3             | 0.005 | 8.1  | 10.8                     | 8.9   | 175      | 214                            | 144 | <20                               |
| 04.08.2015         | 21.6           | 51.1                       | 11.2                        | 13.7                            | <0.001                        | <1.0                                             | <0.001            | 0.2             | 0.003 | 7.8  | 11.3                     | 5.7   |          | _                              | 132 | <20                               |
| 12.08.2015         | 24.0           | 50.4                       | 12.3                        | 14.2                            | <0.001                        | <1.0                                             | <0.001            | 0.5             | 0.005 | 8.3  | 10.7                     | 6.3   | 173      | +                              | 143 | <20                               |
| 13.08.2015         | 22.3           | 53.1                       | 10.8                        | 12.8                            | <0.001                        | <1.0                                             | <0.001            | 9.0             | 0.007 | 7.9  | 10.2                     | 6.1   |          | -                              | 133 | <20                               |
| 19,08,2015         |                | 50.3                       | 11.1                        | 13.8                            | <0.001                        | <1.0                                             | <0.001            | 0.4             | 0.004 | 9.2  | 11.5                     | 7.4   | 181      | -                              | 142 | <20                               |
| 20.08.2015         |                | 52.6                       | 12.1                        | 15.0                            | <0.001                        | <1.0                                             | <0.001            | 0.2             | 0.003 | 7.7  | 9.6                      | 5.6   | -        | $\dashv$                       | 125 | <20                               |
| 24.08.2015         | 23.4           | 51.0                       | 11.7                        | 13.5                            | <0.001                        | <1.0                                             | <0.001            | 0.5             | 0.005 | 8.0  | 10.4                     | 6.2   | -        | -                              | 130 | <20                               |
| 25.08.2015         | 24.5           | 52.4                       | 10.7                        | 12.7                            | <0.001                        | <1.0                                             | <0.001            | 0.4             | 0.002 | 9.3  | 11.2                     | 7.0   | 174      | 204                            | 137 | <20                               |
| Limits as          |                |                            |                             |                                 |                               |                                                  |                   |                 |       |      |                          |       |          |                                |     |                                   |
| per                | 09             | 100                        | 80                          | 08                              | 5.0                           | 1.0                                              | 0.9               | 70              | 1.0   |      | 100                      |       | • •      | 2000                           |     | 400                               |
| NAAQS              |                |                            |                             |                                 |                               |                                                  |                   |                 |       |      |                          |       |          |                                |     |                                   |
| Test               | Gravii         | Gravimetric<br>Method      | Improved<br>West &<br>Geake | Modifie d Jacob & A Hochh eiser | Solvent E<br>followec<br>Anal | Solvent Extraction<br>followed by GC<br>Analysis |                   | AAS/ICP         | _     | J VU | UV Photometric<br>method | itric | Spec     | NDIR<br>Spectroscopy<br>Method |     | Indophe<br>nols<br>Blue<br>Method |
|                    |                |                            |                             | 2012                            |                               | 4                                                |                   |                 |       |      |                          |       |          |                                |     | · ·                               |

\*\* As per National Ambient Air Quality Standards - G. S. R. 826(E) notification dated 16.11.2009.

### MSK Power from knowledge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

|                    |                            | 1                         |                          |              |                       | Benzo(a)                          | 1                | 1 2 3 4         |               | - Landerson Marie - Landerson Maria | O <sub>3</sub> | MAIN MARKET TO THE TOTAL TOTAL TO THE TOTAL |     | CO<br>Find/m <sub>3</sub> |     | N.          |
|--------------------|----------------------------|---------------------------|--------------------------|--------------|-----------------------|-----------------------------------|------------------|-----------------|---------------|-------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------|-----|-------------|
| Monitoring<br>Date | PM <sub>2.5</sub><br>µg/m³ | PM <sub>10</sub><br>µg/m³ | SO <sub>2</sub><br>µg/m³ | NOX<br>µg/m³ | CeHs<br>µg/m³         | Particulate Phase                 | Arsenic<br>µg/m³ | nickei<br>µg/m³ | Lead<br>µg/m³ |                                     | =              | Parado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _   | Posted                    |     | nag/m³      |
|                    |                            |                           |                          |              |                       | SEPTE                             | SEPTEMBER 2015   | 15              |               |                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                           |     | WOOD COLUMN |
| 01.09.2015         | 20.9                       | 51.2                      | 11.7                     | 13.4         | <0.001                | <1.0                              | <0.001           | 0.1             | 0.002         | 9.3                                 | 11.1           | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 169 | 207                       | 138 | <20         |
| 07,09,2015         | 23.1                       | 52.2                      | 10.8                     | 12.7         | <0.001                | <1.0                              | <0.001           | 0.3             | 0.005         | 7.2                                 | 9.5            | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157 | 186                       | 126 | <20         |
| 08.09.2015         |                            | 53.1                      | 11.9                     | 13.6         | <0.001                | <1.0                              | <0.001           | 0.4             | 0.003         | 9.9                                 | 8.4            | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 167 | 198                       | 137 | <20         |
| 14.09.2015         | 21.8                       | 51.8                      | 10.4                     | 12.2         | <0.001                | <1.0                              | <0.001           | 0.3             | 0.006         | 9.4                                 | 11.2           | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 164 | 194                       | 126 | <20         |
| 15.09.2015         | L                          | 52.6                      | 12.1                     | 14.2         | <0.001                | <1.0                              | <0.001           | 0.2             | 0.003         | 8.1                                 | 10.5           | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 175 | 209                       | 136 | <20         |
| 21.09.2015         | L                          | 50.7                      | 11.7                     | 13.7         | <0.001                | <1.0                              | <0.001           | 0.1             | 0.005         | 7.3                                 | 9.3            | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168 | 201                       | 123 | <20         |
| 22.09.2015         |                            | 54.1                      | 11.3                     | 13.9         | <0.001                | <1.0                              | <0.001           | 9.4             | 0.004         | 9.0                                 | ŢŢ             | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171 | 190                       | 145 | <20         |
| 28.09.2015         |                            | 50.6                      | 10.3                     | 12.1         | <0.001                | <1.0                              | <0.001           | 0.3             | 0.001         | 8.5                                 | 10.4           | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168 | 197                       | 128 | <20         |
| Limits as          |                            |                           |                          |              |                       |                                   |                  |                 |               |                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 4                         |     |             |
| per                | 09                         | 100                       | 80                       | 80           | 5.0                   | 0.1                               | 0.9              | 70              | 1.0           |                                     | 100            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 2000                      |     | 400         |
| NAAQS              |                            |                           |                          |              |                       |                                   |                  |                 |               |                                     | *AAAATTI TETT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | A CHARLES TO THE STREET   |     |             |
|                    |                            |                           |                          | Modifie<br>d |                       |                                   |                  |                 |               |                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                           |     | Indonhe     |
| Test               | Gravir                     | Gravimetric               | Improved<br>West &       | Jacob        | Solvent I<br>followed | Solvent Extraction followed by GC |                  | AAS/ICP         |               | J VU                                | UV Photometric | tric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spe | NDIR<br>Spectroscopy      |     | nols        |
| Memods             | 19 <u>14</u>               | <u> </u>                  | Geake                    |              | Ana                   | Analysis                          |                  |                 |               | -                                   | 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2   | <b>lethod</b>             |     | Method      |
|                    |                            |                           |                          | eiser        |                       |                                   |                  |                 |               |                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                           |     |             |
|                    |                            |                           |                          | Method       |                       | ,                                 |                  |                 |               |                                     |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                           | _   |             |

\*\* As per National Ambient Air Quality Standards - G. S. R. 826(E) notification dated 16.11.2009.



2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### **TABLE** – 4 (F)

Outside Ambient Air Quality Monitoring

Location: Nariyara

|          |                                        |                                         |            |            | _          | -          | _          |            | -          |            |            |            |           |      | _       |                                                  |
|----------|----------------------------------------|-----------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------|---------|--------------------------------------------------|
| Ž        | m/grd                                  |                                         | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | ç         | 400  |         | Indophe<br>nois<br>Blue<br>Method                |
|          |                                        |                                         | 160        | 142        | 154        | 161        | 139        | 153        | 162        | 143        | 151        | 140        |           |      |         | , do                                             |
| ε<br>OO  | -                                      |                                         | 220        | 208        | 213        | 225        | 209        | 217        | 220        | 206        | 213        | 205        | •         | 2000 |         | NDIR<br>Spectroscopy<br>Method                   |
|          | _                                      |                                         | 191        | 175        | 182        | 194        | 170        | 184        | 194        | 173        | 181        | 173        |           |      |         | S                                                |
|          | =                                      |                                         | 9.9        | 7.1        | 5.8        | 6.8        | 6.2        | 7.0        | 5.9        | 7.1        | 6.5        | 5.2        |           |      |         | etric                                            |
| o3,      |                                        |                                         | 10.1       | 11.3       | 9.8        | 10.4       | 10.7       | 11.0       | 9.6        | 11.2       | 10.6       | 9.5        | •         | 100  |         | UV Photometric<br>method                         |
|          | -                                      |                                         | 8.3        | 9.1        | 7.8        | 8.5        | 8.1        | 9.3        | 7.3        | 9.4        | 8.8        | 7.0        |           |      |         | 20                                               |
|          | ng/m³                                  |                                         | 0.011      | 0.013      | 0.008      | 0.011      | 0.013      | 0.010      | 0.013      | 0.011      | 0.00       | 0.012      | !         | 0.   | Lincoln |                                                  |
| 2        | Nickei<br>µg/m³                        |                                         | 1.2        | 1.1        | 1.4        | 1.0        | 1.2        | 1.0        | 1.4        | 1.1        | 1.3        | 1.2        |           | 70   |         | AAS/ICP                                          |
|          | Arsenic<br>µg/m³                       | <b>APRIL 2015</b>                       | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 0.9  |         |                                                  |
| Benzo(a) |                                        | APF                                     | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 0.   |         | xtraction<br>by GC<br>ysis                       |
| :        | С <sub>6</sub> Н <sub>6</sub><br>µg/m³ |                                         | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  |         | Solvent Extraction<br>followed by GC<br>Analysis |
|          | NOX<br>m/Brl                           |                                         | 13.1       | 14.2       | 14.8       | 13.2       | 14.3       | 13.5       | 14.2       | 14.6       | 13.3       | 14.1       |           | 8    |         | Modifie d Jacob & Hochh eiser                    |
|          | SO <sub>2</sub><br>µg/m³               | *************************************** | 11.4       | 11.9       | 12.6       | 11.3       | 11.9       | 11.4       | 11.7       | 12.1       | 10.7       | 11.7       |           | 08   |         | Improved<br>West &<br>Geake                      |
| 1        | PM <sub>10</sub><br>µg/m³              |                                         | 47.0       | 44.9       | 49.0       | 46.9       | 46.0       | 44.7       | 48.2       | 45.9       | 48.9       | 47.1       |           | 100  |         | Gravimetric<br>Method                            |
|          | PM <sub>2.5</sub><br>µg/m³             | Catholica                               | 21.4       | 19.1       | 22.2       | 20.3       | 24.1       | 21.7       | 21.3       | 23.8       | 23.0       | 21.1       |           | 09   |         | Gravii                                           |
|          | Monitoring<br>Date                     | ALLANDONISTICS                          | 01.04.2015 | 02.04.2015 | 08.04.2015 | 09.04.2015 | 15.04.2015 | 16.04.2015 | 22 04 2015 | 23.04.2015 | 29.04.2015 | 30.04.2015 | Limits as | per  | NAAQS   | Test<br>Methods                                  |

### KSK Rowledge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

| H                     | uns<br>ng/m³                                |          | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        |           | 400  |       | Indophe<br>nols<br>Blue<br>Method                |
|-----------------------|---------------------------------------------|----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------|-------|--------------------------------------------------|
|                       | =                                           |          | 148        | 130        | 142        | 149        | 127        | 141        | 150        | 131        |           |      |       | opy                                              |
| CO ng/m³              | •••••                                       |          | 204        | 192        | 197        | 209        | 193        | 201        | 204        | 190        |           | 2000 |       | NDIR<br>Spectroscopy<br>Method                   |
|                       |                                             |          | 175        | 159        | 166        | 178        | 154        | 168        | 178        | 157        |           |      |       | g<br>                                            |
|                       | =                                           |          | 6.2        | 7.2        | 7.9        | 7.2        | 6.8        | 7.5        | 6.1        | 7.8        |           |      |       | netric                                           |
| O <sub>3</sub>        | =                                           |          | 9.6        | 10.5       | 11.1       | 9.5        | 11.0       | 10.6       | 8.6        | 10.7       |           | 100  |       | UV Photometric<br>method                         |
|                       |                                             |          | 7.7        | 9.8        | 9.1        | 8.1        | 9.8        | 8.9        | 7.6        | 8.1        |           |      |       | ΛΛ                                               |
|                       | Lead<br>hg/m³                               |          | 0.010      | 600.0      | 0.011      | 0.007      | 0.011      | 800'0      | 0.012      | 0.009      |           | 1.0  |       | 0                                                |
| I CACH                | nickei<br>µg/m³                             |          | 1.0        | 0.8        | 1.1        | 0.7        | 1.1        | 6.0        | 1.1        | 1.2        |           | 2    |       | AAS/ICP                                          |
|                       | Arsenic<br>µg/m³                            | MAY 2015 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 0.9  |       | •                                                |
| Benzo(a)<br>pyrene in | Particulate Hisenic<br>Phase Hg/m³<br>µg/m³ | MA       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 1.0  |       | xtraction<br>I by GC<br>ysis                     |
|                       | Cene<br>µg/m³                               |          | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  |       | Solvent Extraction<br>followed by GC<br>Analysis |
| Š                     | NOX<br>hg/m³                                |          | 12.3       | 13.4       | 14.0       | 12.4       | 13.5       | 12.7       | 13.4       | 13.8       |           | 80   |       | Modifie d Jacob & Hochh eiser Method             |
| 6                     | SO <sub>2</sub><br>hg/m³                    |          | 10.9       | 11.4       | 12.1       | 10.8       | 11.4       | 10.9       | 11.2       | 11.6       |           | 80   |       | Improved<br>West &<br>Geake                      |
|                       | Hg/m <sup>3</sup>                           |          | 48.2       | 46.1       | 50.2       | 48.1       | 47.2       | 45.9       | 49.4       | 47.1       |           | 100  |       | Gravimetric<br>Method                            |
|                       | PM2.5<br>µg/m³                              |          | 22.5       | 20.2       |            | 21.4       | _          | 22.8       | 22.4       | 24.9       |           | 99   |       | Gravi                                            |
|                       | Monitoring<br>Date                          |          | 04.05.2015 | 05.05.2015 | 11.05.2015 | 12.05.2015 | 18.05.2015 | 19.05.2015 | 25.05.2015 | 26.05.2015 | Limits as | per  | NAAQS | Test<br>Methods                                  |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.



### SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II

P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT

| ıO.            |
|----------------|
| 2              |
| 5              |
| ನ              |
| ` `            |
| ĸ              |
| $\Box$         |
| BER            |
| Р              |
| ₩              |
|                |
| ſΞÌ            |
| SEPTE          |
| ዾ`             |
| _              |
| $\sim$         |
| Ö              |
| _              |
|                |
| $^{\prime}$ T0 |
| _              |
| ت              |
|                |
| $\mathbf{z}$   |
| 芒              |
| PRII           |
| ⋖              |
| 7              |
|                |
|                |
|                |
|                |
|                |

| , I                                    | m/gr<br>hg/m³                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | •         | 400  | Indophe<br>nols<br>Blue<br>Method             |
|----------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------|-----------------------------------------------|
| ************************************** |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155        | 137        | 149        | 151        | 134        | 136        | 157        | 130        | 139        | 151        |           |      | Ado T                                         |
| oo<br>m/br                             | =                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 211        | 199        | 204        | 216        | 200        | 188        | 211        | 197        | 203        | 213        | •         | 2000 | NDIR<br>Spectroscopy<br>Method                |
|                                        | entined.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181        | 165        | 172        | 184        | 175        | 163        | 184        | 163        | 168        | 180        |           |      | Ś                                             |
|                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.9        | 8.0        | 6.7        | 7.8        | 5.9        | 6.1        | 6.8        | 8.0        | 6.4        | 5.5        |           |      | etric                                         |
| o <sub>s</sub><br>m/gri                | <b>=</b>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2       | 11.5       | 10.8       | 11.3       | 10.8       | 9.6        | 11.2       | 11.6       | 10.7       | 9.5        | 1         | 9    | UV Photometric<br>method                      |
|                                        | _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.1        | 9.6        | 8.4        | 6          | 8.1        | 7.7        | 8.6        | 9.5        | 8.5        | 7.3        |           |      | NO -                                          |
|                                        | Lead<br>µg/m³                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.007      | 0.005      | 0.010      | 800.0      | 0.006      | 0.010      | 0.007      | 600.0      | 0.010      | 900'0      |           | 1.0  |                                               |
| 1030114                                | Nickel<br>µg/m³                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0        | 0.7        | 6.0        | 0.7        | 1.0        | 0.5        | 9'0        | 6.0        | 1.1        | 0.7        |           | 20   | AAS/ICP                                       |
|                                        | Arsenic<br>µg/m³                             | JUNE 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 0.9  |                                               |
| Benzo(a)<br>pyrene in                  | Particulate Parsenic<br>Phase pg/m³<br>pg/m³ | anr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | ć    | ent Extraction<br>owed by GC<br>Analysis      |
|                                        | CeHe<br>µg/m³                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  | Solvent Extraction followed by GC<br>Analysis |
|                                        | ng/m³                                        | and white the same of the same | 13.1       | 12.6       | 13.2       | 13.1       | 14.4       | 13.0       | 15.0       | 14.2       | 13.1       | 14.0       |           | 80   | Modifie d A Jacob & A Hochh eiser Method      |
| 3                                      | SO <sub>2</sub><br>Hg/m <sub>3</sub>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.6       | 10.9       | 11.5       | 11.5       | 12.1       | 11.6       | 13.2       | 12.3       | 11.4       | 12.5       |           | 80   | Improved<br>West &<br>Geake                   |
|                                        | PM <sub>10</sub>                             | A CONTRACTOR OF THE CONTRACTOR | 49.7       | 50.1       | 48.3       | 49.6       | 46.9       | 47.4       | 51.2       | 48.6       | 51.6       | 48.2       |           | 100  | Gravimetric<br>Method                         |
|                                        | PM <sub>2.5</sub><br>µg/m³                   | box miner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.6       | 19.3       | 22.4       | 20.5       | 24.3       | 21.9       | 21.5       | 24.0       | 21.0       | 22.8       |           | 09   | Gravi                                         |
|                                        | Monitoring<br>Date                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01.06.2015 | 02.06.2015 | 08.06.2015 | 09.06.2015 | 15.06.2015 | 16.06.2015 | 22.06.2015 | 23.06.2015 | 29.06.2015 | 30.06.2015 | Limits as | per  | Test                                          |

### KSK Power from knowledge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase - I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT

APRIL TO SEPTEMBER 2015

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

| Ï                                           | ng/m³                         |           | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | 1         | 400      |       | Indophe<br>nols<br>Blue<br>Method             |
|---------------------------------------------|-------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|----------|-------|-----------------------------------------------|
|                                             | =                             |           | 162        | 144        | 156        | 162        | 141        | 147        | 163        | 142        |           |          |       | , doc                                         |
| CO<br>hg/m³                                 | -                             |           | 223        | 204        | 212        | 221        | 202        | 193        | 216        | 202        |           | 2000     |       | NDIR<br>Spectroscopy<br>Method                |
|                                             |                               |           | 193        | 172        | 182        | 191        | 176        | 170        | 191        | 170        |           |          |       | S                                             |
| Westerland of Ballice Balter Ballice Balter | =                             |           | 7.1        | 9.9        | 5.8        | 6.1        | 77         | 5.5        | 0.9        | 5.9        |           |          |       | netric                                        |
| O <sub>3</sub><br>µg/m³                     | =                             |           | 11.3       | 10.5       | 9.6        | 10.4       | 11.1       | 9.5        | 10.7       | 10.1       |           | 100      |       | UV Photometric<br>method                      |
|                                             | _                             |           | 9.3        | 8.2        | 7.5        | 8.2        | 9.1        | 7.7        | 8.2        | 8.5        |           |          |       | ΛΩ                                            |
|                                             | hg/m³                         |           | 0.005      | 0.008      | 0.005      | 0.004      | 0.006      | 0.008      | 0.005      | 0.007      |           | 4.<br>0. |       | 0                                             |
| Nickol                                      | hicker<br>hg/m³               | :         | 0.4        | 0.3        | 0.7        | 0.5        | 6.0        | 0.8        | 0.5        | 0.9        |           | 20       |       | AAS/ICP                                       |
| Airconk                                     | Hg/m <sup>3</sup>             | JULY 2015 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 6.0      |       |                                               |
| Benzo(a)<br>pyrene in                       | Particulate<br>Phase<br>µg/m³ | Inc       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 1.0      |       | xtraction<br>I by GC<br>ysis                  |
|                                             | rg/m³                         |           | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0      |       | Solvent Extraction followed by GC<br>Analysis |
| Š                                           | nOx<br>hg/m³                  |           | 12.3       | 14.6       | 12.4       | 13.8       | 14.1       | 12.2       | 14.8       | 13.4       |           | 80       |       | Modifie d Jacob & Hochh eiser Method          |
| G                                           | SO <sub>2</sub><br>µg/m³      |           | 10.9       | 12.2       | 10.8       | 11.9       | 11.4       | 10.9       | 12.5       | 11.6       |           | 80       |       | Improved<br>West &<br>Geake                   |
| į                                           | rw <sub>10</sub><br>µg/m³     |           | 52.1       | 49.6       | 51.2       | 50.7       | 53.2       | 47.6       | 52.3       | 50.2       |           | 100      |       | Gravimetric<br>Method                         |
|                                             | PM2.5<br>µg/m³                |           | 20.7       |            |            | L          |            | 21.1       | L          |            |           | 09       |       | Gravi                                         |
|                                             | Monitoring<br>Date            |           | 06.07.2015 | 07.07.2015 | 13.07.2015 | 14.07.2015 | 20.07.2015 | 21.07.2015 | 27.07.2015 | 28.07.2015 | Limits as | per      | NAAQS | Test                                          |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.



### 2 x 43 MW Coal Based Captive Power Plant Phase - I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT SAI LILAGAR POWER COMPANY LTD. APRIL TO SEPTEMBER 2015

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       | - 1        |            |            |            |            |            | -          |               |              | $\neg$               |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------------|------------|------------|------------|------------|------------|---------------|--------------|----------------------|--------------------------------------------------|
| ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pg/m³                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <20     | <20        | <20        | <20        | <20        | <20        | <20        | <20        |               | 400          | - Service - American | Indophe<br>nols<br>Blue<br>Method                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 157     | 135        | 148        | 157        | 136        | 139        | 158        | 137        |               |              |                      | oby -                                            |
| os<br>Mg/m <sub>g</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>—</b>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 217     | 197        | 206        | 215        | 199        | 187        | 210        | 196        | •             | 2000         |                      | NDIR<br>Spectroscopy<br>Method                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 187     | 166        | 176        | 185        | 170        | 164        | 185        | 164        |               |              |                      | Sp                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.9     | 5.8        | 6.1        | 5.8        | 6.9        | 6.2        | 5.7        | 6.1        |               |              |                      | etric<br>I                                       |
| O <sub>3</sub><br>µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2    | 9.6        | 10.4       | 9.3        | 10.8       | 10.2       | 9.5        | 9.3        |               | 100          |                      | UV Photometric<br>method                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>—</b>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2     | 7.1        | 8.0        | 7.3        | 8.5        | 8.2        | 7.0        | 7.5        |               |              |                      | <u> </u>                                         |
| \<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hg/m³                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002   | 0.005      | 0.003      | 0.005      | 0.004      | 0.002      | 900.0      | 0.004      |               | 1 <u>.</u> 0 |                      | 0                                                |
| i de la companya de l | Nickei<br>µg/m³            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2     | 0.5        | 0,4        | 9.0        | 0.5        | 0.3        | 0.4        | 0.2        |               | 20           |                      | AAS/ICP                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic<br>µg/m³           | AUGUST 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.001  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |               | 0.9          |                      |                                                  |
| Benzo(a)<br>pyrene in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d)                         | AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1.0    | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |               | 0.1          |                      | ent Extraction<br>owed by GC<br>Analysis         |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CeHe<br>hg/m³              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.001  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | - Laboratoria | 5.0          |                      | Solvent Extraction<br>followed by GC<br>Analysis |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wow<br>hg/m³               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.5    | 15.9       | 13.6       | 15.0       | 15.3       | 13.4       | 14.4       | 14.6       |               | 80           |                      | Modifie d Jacob & Hochh eiser                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SO <sub>2</sub><br>µg/m³   | The state of the s | 120     | 133        | 119        | 13.0       | 12.5       | 12.0       | 117        | 12.7       |               | 8            |                      | Improved<br>West &<br>Geake                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM <sub>10</sub><br>µg/m³  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 520     | 23.3       | 7.7.7      | 52.5       | 53.9       | 40.4       | 54.1       | 52.0       |               | 100          |                      | Gravimetric<br>Method                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM <sub>2.5</sub><br>µg/m³ | * HANNEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 00    | 0.77       | 23.1       | 21.0       | 24.8       | 22.4       | 23.1       | 22.1       |               | 09           |                      | Graví<br>Mel                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring<br>Date         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,00,00 | 03.08.2015 | 12 00 2015 | 12.00.2015 | 10.08.2015 | 20 08 2015 | 24 00 2015 | 25 08 2015 | Limits as     | per          | NAAQS                | Test                                             |

### M KSK Power from knowledge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT

### APRIL TO SEPTEMBER 2015

# \*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

| Ĭ                                       | n/grl                                     |                | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | • | Indophe<br>nols<br>Blue<br>Method                |
|-----------------------------------------|-------------------------------------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---|--------------------------------------------------|
| *************************************** | =                                         |                | 163        | 140        | 153        | 163        | 141        | 137        | 145        | 143        | 158        |   | opy<br>d                                         |
| CO ng/m³                                | =                                         |                | 226        | 202        | 211        | 221        | -          | 193        | 215        | 201        | 211        |   | NDIR<br>Spectroscopy<br>Method                   |
|                                         |                                           |                | 193        | 172        | 182        | 191        | 176        | 167        | 178        | 170        | 182        |   | <u>σ</u>                                         |
| 3                                       | =                                         |                | 7.2        | 6.8        | 5.1        | 6.1        | 5.8        | 7.1        | 5.1        | 9'9        | 4.9        |   | metric                                           |
| O <sub>3</sub><br>µg/m³                 | =                                         |                | 11.1       | 10.6       | 9.6        | 10.4       | 9.2        | 11.6       | 8.7        | 10.3       | 8.9        |   | UV Photometric<br>method                         |
|                                         | _                                         |                | 9.1        | 8.3        | 7.4        | 8.0        | 7.3        | 9.1        | 6.7        | 8,5        | 6.9        |   | <u> </u>                                         |
| ļ                                       | ng/m³                                     |                | 0.004      | 0.001      | 0.002      | £00'0      | 0.002      | 0.004      | 0.002      | 0.001      | 0.003      |   | 0                                                |
|                                         | ulchei<br>µg/m³                           | 15             | 0.1        | 0.3        | 0.2        | 0.4        | 0.2        | 0.1        | 0.3        | 0.4        | 0.2        |   | AAS/ICP                                          |
| Arconio                                 | Alsellic<br>µg/m³                         | SEPTEMBER 2015 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |   |                                                  |
| Benzo(a)<br>pyrene in                   | Particulate Plase Phase pg/m³ pg/m³ pg/m³ | SEPTE          | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |   | xtraction<br>by GC<br>ysis                       |
|                                         | Cene<br>µg/m³                             |                | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |   | Solvent Extraction<br>followed by GC<br>Analysis |
| No.                                     | ng/m³                                     |                | 13.4       | 14.8       | 12.9       | 14.4       | 13.6       | 12.7       | 13.3       | 15.0       | 14.3       |   | Modifie d Jacob & A Hochh eiser Method           |
| 8                                       | sO2<br>hg/m³                              |                | 11.3       | 12.6       | 11.2       | 12.3       | 11.8       | 10.9       | 11.0       | 13.1       | 12.2       |   | Improved<br>West &<br>Geake                      |
|                                         | ray<br>hg/m <sup>3</sup>                  |                | 55.7       | 53.3       | 54.9       | 54.3       | 55.7       | 51.2       | 53.2       | 53.8       | 50.7       |   | Gravimetric<br>Method                            |
| Č                                       | PM2.5<br>µg/m³                            | deressee.      | 23.4       | 25.8       | 24.5       | 22.4       | 21.8       | 23.8       | 25.4       | 23.4       | 24.3       |   | Graví                                            |
|                                         | Monitoring<br>Date                        |                | 01,09,2015 | 07.09.2015 | 08.09.2015 | 14.09.2015 | 15.09.2015 | 21.09.2015 | 22.09.2015 | 28.09.2015 | 29.09.2015 |   | Test<br>Methods                                  |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.

### Power from knowledge

## SAI LILAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### **TABLE - 4 (F)**

Outside Ambient Air Quality Monitoring

Location: Tarod

| NH <sub>3</sub><br>µg/m³                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 400                       | Indophenols<br>Blue<br>Method                    |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|--------------------------------------------------|
| CO Hg/m³                                   | The Association of the Control of th |                            | 2000                      | NDIR<br>Spectroscopy<br>Method                   |
| O <sub>3</sub> µg/m³                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 100                       | UV Photometric<br>method                         |
| Lead<br>µg/m³                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #:                         | 1.0                       |                                                  |
| Nickel<br>µg/m³                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t conduc                   | 20                        | AAS/ICP                                          |
| Arsenic<br>µg/m³                           | <b>APRIL 2015</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | was no                     | 6.0                       |                                                  |
| Benzo(a) pyrene in Particulate Phase µg/m³ | ΑF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring was not conduct | 1.0                       | xtraction<br>I by GC<br>ysis                     |
| C <sub>6</sub> H <sub>6</sub><br>µg/m³     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 5.0                       | Solvent Extraction<br>followed by GC<br>Analysis |
| NOx<br>µg/m³                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 80                        | Modifie d Jacob & Hochh eiser                    |
| SO <sub>2</sub><br>µg/m³                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 80                        | Improved<br>West &<br>Geake                      |
| PM <sub>10</sub><br>µg/m³                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 100                       | Gravimetric<br>Method                            |
| PM <sub>2.5</sub><br>µg/m³                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 09                        | Gravir                                           |
| Monitoring<br>Date                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Limits as<br>per<br>NAAQS | Test<br>Methods                                  |

\*\* As per National Ambient Air Quality Standards - G. S. R. 826(E) notification dated 16.11.2009.



## SAI LILAGAR POWER COMPANY LTD. 2 x 43 MW Coal Based Captive Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

| ž           | µg/m³                               |             | <20        | <20        | <20        | <20        | <20        | ×20        | ×20        | <20        | 9         | 9    |       | Indophe<br>nols<br>Blue<br>Method                |  |
|-------------|-------------------------------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------|-------|--------------------------------------------------|--|
|             | =                                   |             | 149        | 152        | 160        | 157        | 143        | 134        | 151        | 142        | •         |      |       | , do                                             |  |
| CO<br>hg/m³ | 1                                   |             | 199        | 210        | 215        | 205        | 201        | 192        | 207        | 197        | 0         | 7000 | 2400  | NDIR<br>Spectroscopy<br>Method                   |  |
|             | _                                   |             | 176        | 182        | 191        | 186        | 175        | 164        | 180        | 176        |           |      |       | g                                                |  |
|             | =                                   |             | 9.9        | 5.2        | 7,1        | 7.6        | 6.2        | 5.9        | 6.1        | 7.3        |           |      |       | netric<br>d                                      |  |
| °O3         | =                                   |             | 10.2       | 8.5        | 10.6       | 11.6       | 10.1       | 9.6        | 10.4       | 11.2       | ,         | 100  |       | UV Photometric<br>method                         |  |
|             | _                                   |             | 8.4        | 6.9        | 8.1        | 9.6        | 8.3        | 7.7        | 7.9        | 9.1        |           |      |       | 3                                                |  |
| -           | read<br>hg/m <sub>3</sub>           |             | 0.012      | 0.006      | 0.013      | 0.008      | 0.010      | 0.007      | 0.005      | 0.011      |           | 0.   |       | 0                                                |  |
|             | Nickel<br>µg/m³                     |             | 1.2        | 1.0        | 1.3        | 1.1        | 1.2        | 1.4        | 0.9        | 1.2        |           | 20   |       | AAS/ICP                                          |  |
|             | Arsenic<br>µg/m³                    | MAY 2015    | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | 1         | 0.9  |       |                                                  |  |
| Benzo(a)    | Particulate Arsenic r Phase µg/m³ l | MA          | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |           | 1.0  |       | olvent Extraction<br>followed by GC<br>Analysis  |  |
|             | CeHs<br>µg/m³                       | WARRE       | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |           | 5.0  |       | Solvent Extraction<br>followed by GC<br>Analysis |  |
|             | NOX<br>hg/m³                        |             | 14.9       | 13.3       | 14.8       | 13.7       | 15.8       | 14.1       | 14.6       | 13.4       |           | 80   |       | Modifie d Jacob & Hochh eiser                    |  |
|             | SO <sub>2</sub><br>µg/m³            | à suadrir - | 127        | 11.3       | 12.5       | 12.2       | 13.1       | 12.0       | 12.6       | 11.1       |           | 80   |       | Improved<br>West &<br>Geake                      |  |
|             | PM <sub>10</sub><br>µg/m³           |             | 50.5       | 48.6       | 51.2       | 49.3       | 50.1       | 52.6       | 46.3       | 50.2       |           | 100  |       | Gravimetric<br>Method                            |  |
|             | PM <sub>2.5</sub><br>µg/m³          |             | 22.3       | 24.6       | 24.0       | 21.7       | 24.1       | 25.2       | 26.6       | 24.3       |           | 09   |       | Grav                                             |  |
|             | Monitoring<br>Date                  |             | 3 00 30 40 | 05.05.2015 | 11 05 2015 | 12.02.2013 | 18 05 2015 | 19.05.2015 | 25.05.2015 | 26.05.2015 | Limits as | per  | NAAQS | Test                                             |  |

\*\* As per National Ambient Air Quality Standards – G. S. R. 826(E) notification dated 16.11.2009.



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### 2.3 Source Emission Monitoring

One common chimney attached to Boiler No. I & II is monitored for estimating emission rates with respect to Particulate matter, Sulphur Dioxide and Oxides of nitrogen. Online meter is provided for central monitoring of SPM.

### 2.3.1 Methodology of Sampling

The stack sampling was carried out by **ISO-KINETIC METHOD** using pre-calibrated stack kit. Cellulose and Glass Fiber thimbles were use for collecting particulate matter. The Sulphur Dioxide is estimated as per Emission Regulations (December, 1985) Part-III, COINDS/20/1984-85 published by CPCB, New Delhi. NOx is estimated as per IS: 11255 Part VI and ASTM D- 1607.

### 2.3.2 Result and Discussions

Stack emission monitoring was carried out for Boiler I & II respectively. The emission rates were meeting the limits prescribed by CECB and results were tabulated in **Table - 5(A)** to **5(F)**. The summary of these results **(APRIL – SEPTEMBER 2015)** is given below in **Table - 5**.

TABLE- 5

SOURCE EMISSION MONITORING Phase – 1: FOR BOILER I & II

(Common Stack Attached to Boiler I & II)

| Month          | Dust<br>Concentration<br>(mg/Nm³) | Sulphur Dioxide<br>(mg/Nm³) | Oxides of<br>Nitrogen<br>(mg/Nm³) |
|----------------|-----------------------------------|-----------------------------|-----------------------------------|
| APRIL 2015     | SHUT DOWN                         | SHUT DOWN                   | SHUT DOWN                         |
| MAY 2015       | SHUT DOWN                         | SHUT DOWN                   | SHUT DOWN                         |
| JUNE 2015      | SHUT DOWN                         | SHUT DOWN                   | SHUT DOWN                         |
| JULY 2015      | 33.2                              | 283.0                       | 219.0                             |
| AUGUST 2015    | 35.4                              | 269.0                       | 196.0                             |
| SEPTEMBER 2015 | 41.2                              | 280.0                       | 219.0                             |

The maximum value of dust concentration is 41.2 mg/Nm³ observed in the month of September 2015. Similarly the maximum values of SO₂ and NOx concentration are 283.0 and 219.0 mg/Nm³ observed in the month of July and September 2015.



2 x 43 MW Coal Based Power Plant Phase - I & II P.O.: Gopal Nagar, Dist.: Janigir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE-5(A) SOURCE EMISSION MONITORING Phase -II: FOR BOILER I & II (Common Stack Attached to Boiler I & II)

|                | (Common Stack Attached to Bone, i a m) |                             |                                   |  |  |
|----------------|----------------------------------------|-----------------------------|-----------------------------------|--|--|
| Month          | Dust<br>Concentration<br>(mg/Nm³)      | Sulphur Dioxide<br>(mg/Nm³) | Oxides of<br>Nitrogen<br>(mg/Nm³) |  |  |
| APRIL 2015     | SHUT DOWN                              | SHUT DOWN                   | SHUT DOWN                         |  |  |
| MAY 2015       | 31.6                                   | 277.0                       | 182.0                             |  |  |
| JUNE 2015      | 32.8                                   | 286.0                       | 202.0                             |  |  |
| JULY 2015      | 31.7                                   | 312.0                       | 242.0                             |  |  |
| AUGUST 2015    | SHUT DOWN                              | SHUT DOWN                   | SHUT DOWN                         |  |  |
| SEPTEMBER 2015 | SHUT DOWN                              | SHUT DOWN                   | SHUT DOWN                         |  |  |

The maximum value of dust concentration is 32.8 mg/Nm³ observed in the month of June 2015. Similarly the maximum values of SO<sub>2</sub> and NOx concentration are 312.0 and 242.0 mg/Nm³ observed in the month of September 2015.

### **TABLE-5 (B)** SOURCE EMISSION MONITORING Phase - I: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

| Sr.<br>No. | Parameters           | UOM                | Result | Methods           |
|------------|----------------------|--------------------|--------|-------------------|
| Details    | of the source        |                    |        |                   |
| 1          | Capacity             | MW                 | 43     | _                 |
| 2          | Stack Height         | М                  | 85     | -                 |
| 3          | Duct Dia.            | M                  | 2.5    | _                 |
| 4          | Duct Area            | m²                 | 4.9    | _                 |
| Flue G     | as Characteristics   |                    |        |                   |
| 5          | Temperature          | °C                 |        | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s                |        | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s              |        | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm³             | Shut   | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm³             | down   | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm <sup>3</sup> |        | Flue gas analyzer |

- > Method of estimation of Dust particulates, SO₂:
- > As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- Method of estimation of NOx: As per ASTM D 1608 77 (1990)



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE- 5 (C) SOURCE EMISSION MONITORING Phase - I: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### **MAY 2015**

| IVIA I ZU  | 10                   |                    |        |                   |
|------------|----------------------|--------------------|--------|-------------------|
| Sr.<br>No. | Parameters           | UOM                | Result | Methods           |
| Details    | of the source        |                    |        |                   |
| 1          | Capacity             | MW                 | 43     | ₩.                |
| 2          | Stack Height         | M                  | 86     | _                 |
| 3          | Duct Dia.            | M                  | 3.9    |                   |
| 4          | Duct Area            | m <sup>2</sup>     | 11.9   | -                 |
| Flue Ga    | as Characteristics   |                    |        |                   |
| 5          | Temperature          | l °C               |        | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s                |        | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s              |        | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm³             | Shut   | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm <sup>3</sup> | down   | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm³             |        | Flue gas analyzer |

- Method of estimation of Dust particulates, SO<sub>2</sub>:
- > As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)

➣

### TABLE- 5 (D) SOURCE EMISSION MONITORING Phase - I: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### **JUNE 2015**

| Sr.<br>No. | Parameters           | Parameters UOM     |      | Methods           |
|------------|----------------------|--------------------|------|-------------------|
| Details    | of the source        |                    |      |                   |
| 1          | Capacity             | MW                 | 43   | ₩                 |
| 2          | Stack Height         | М                  | 85   | -                 |
| 3          | Duct Dia.            | M                  | 2.5  | *                 |
| 4          | Duct Area            | m <sup>2</sup>     | 4.91 | -                 |
| Flue Ga    | as Characteristics   |                    |      |                   |
| 5          | Temperature          | °C                 |      | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s                |      | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s              |      | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm³             | Shut | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm³             | down | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm <sup>3</sup> |      | Flue gas analyzer |

- > Method of estimation of Dust particulates, SO<sub>2</sub>:
- > As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE- 5 (E) SOURCE EMISSION MONITORING Phase - I: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### **JULY 2015**

| Sr.<br>No. | Parameters           | UOM                | Result | Methods           |
|------------|----------------------|--------------------|--------|-------------------|
| Details    | of the source        |                    |        |                   |
| 1          | Capacity             | MW                 | 43     | -                 |
| 2          | Stack Height         | М                  | 86     | <u>.</u>          |
| 3          | Duct Dia.            | М                  | 3.9    | ₩                 |
| 4          | Duct Area            | m²                 | 11.9   | -                 |
| Flue Ga    | s Characteristics    |                    |        |                   |
| 5          | Temperature          | °C                 | 106    | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s                | 10.8   | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s              | 95.2   | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm³             | 33.2   | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm <sup>3</sup> | 283    | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm³             | 219    | Flue gas analyzer |

- > Method of estimation of Dust particulates, SO<sub>2</sub>:
- > As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)

### TABLE- 5 (F) SOURCE EMISSION MONITORING Phase - I: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### **AUGUST 2015**

| Sr.<br>No. | Parameters           | UOM                | Result | Methods           |
|------------|----------------------|--------------------|--------|-------------------|
| Details    | of the source        |                    |        |                   |
| 1          | Capacity             | MW                 | 43     | -                 |
| 2          | Stack Height         | М                  | 85     | =                 |
| 3          | Duct Dia.            | М                  | 2.5    |                   |
| 4          | Duct Area            | m²                 | 4.9    | -                 |
| Flue Ga    | s Characteristics    |                    |        |                   |
| 5          | Temperature          | °C                 | 104    | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s                | 12.9   | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s              | 63.2   | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm <sup>3</sup> | 35.4   | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm³             | 269    | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm³             | 196    | Flue gas analyzer |

- ➤ Method of estimation of Dust particulates, SO<sub>2</sub>:
- As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE- 5 (G) SOURCE EMISSION MONITORING Phase -I: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler

### **SEMPTEMBER 2015**

| Sr.<br>No. | Parameters            | UOM                | Result | Methods           |  |  |  |  |
|------------|-----------------------|--------------------|--------|-------------------|--|--|--|--|
| Details    | Details of the source |                    |        |                   |  |  |  |  |
| 1          | Capacity              | MW                 | 43     | -                 |  |  |  |  |
| 2          | Stack Height          | M                  | 85     | -                 |  |  |  |  |
| 3          | Duct Dia.             | М                  | 2.5    | -                 |  |  |  |  |
| 4          | Duct Area             | m²                 | 4.91   | -                 |  |  |  |  |
| Flue Gas   | s Characteristics     |                    |        |                   |  |  |  |  |
| 5          | Temperature           | လိ                 | 109    | USEPA 1,2,3&4     |  |  |  |  |
| 6          | Velocity              | m/s                | 14.1   | USEPA 1,2,3&4     |  |  |  |  |
| 7          | Volumetric Flow Rate  | Nm³/s              | 51.1   | USEPA 1,2,3&4     |  |  |  |  |
| 8          | Particulate Matter    | mg/Nm <sup>3</sup> | 41.2   | USEPA 1,2,3&4     |  |  |  |  |
| 9          | Sulfur dioxide        | mg/Nm <sup>3</sup> | 280    | USEPA 6           |  |  |  |  |
| 10         | Oxides of Nitrogen    | mg/Nm³             | 219    | Flue gas analyzer |  |  |  |  |

- > Method of estimation of Dust particulates, SO<sub>2</sub>:
- > As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)

### TABLE- 5 (H) SOURCE EMISSION MONITORING Phase -II: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### **APRIL 2015**

| Sr.<br>No. | Parameters           | Parameters UOM |      | Methods           |
|------------|----------------------|----------------|------|-------------------|
| Details    | of the source        |                |      |                   |
| 1          | Capacity             | MW             | 43   | w                 |
| 2          | Stack Height         | М              | 86   | -                 |
| 3          | Duct Dia.            | M              | 3.9  | ₩                 |
| 4          | Duct Area            | m²             | 11.9 | -                 |
| Flue G     | as Characteristics   |                |      |                   |
| 5          | Temperature          | °C             |      | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s            |      | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s          |      | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm³         | Shut | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm³         | down | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm³         |      | Flue gas analyzer |

- > Method of estimation of Dust particulates, SO<sub>2</sub>:
- > As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE 5 (I) SOURCE EMISSION MONITORING Phase -II: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### **MAY 2015**

| Sr.<br>No. | Parameters           | UOM    | Result | Methods           |
|------------|----------------------|--------|--------|-------------------|
| Details    | of the source        |        |        |                   |
| 1          | Capacity             | MW     | 43     | -                 |
| 2          | Stack Height         | M      | 86     | •                 |
| 3          | Duct Dia.            | M      | 3.9    |                   |
| 4          | Duct Area            | $m^2$  | 11.9   | 1                 |
| Flue G     | as Characteristics   |        |        |                   |
| 5          | Temperature          | °C     | 80     | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s    | 10.5   | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s  | 103.5  | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm³ | 31.6   | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm³ | 277    | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm³ | 182    | Flue gas analyzer |

- ➤ Method of estimation of Dust particulates, SO<sub>2</sub>:
- As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)

### TABLE- 5 (J) SOURCE EMISSION MONITORING Phase -II: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler

### **JUNE 2015**

| SONE 2015  |                       |                    |        |                   |  |  |  |  |  |  |
|------------|-----------------------|--------------------|--------|-------------------|--|--|--|--|--|--|
| Sr.<br>No. | Parameters            | UOM                | Result | Methods           |  |  |  |  |  |  |
| Details    | Details of the source |                    |        |                   |  |  |  |  |  |  |
| 1          | Capacity              | MW                 | 43     | -                 |  |  |  |  |  |  |
| 2          | Stack Height          | M                  | 85     | -                 |  |  |  |  |  |  |
| 3          | Duct Dia.             | M                  | 2.5    | <del></del>       |  |  |  |  |  |  |
| 4          | Duct Area             | m²                 | 4.91   | -                 |  |  |  |  |  |  |
| Flue Ga    | as Characteristics    |                    |        |                   |  |  |  |  |  |  |
| 5          | Temperature           | °C                 | 95     | USEPA 1,2,3&4     |  |  |  |  |  |  |
| 6          | Velocity              | m/s                | 9.8    | USEPA 1,2,3&4     |  |  |  |  |  |  |
| 7          | Volumetric Flow Rate  | Nm³/s              | 90.9   | USEPA 1,2,3&4     |  |  |  |  |  |  |
| 8          | Particulate Matter    | mg/Nm <sup>3</sup> | 32.8   | USEPA 1,2,3&4     |  |  |  |  |  |  |
| 9          | Sulfur dioxide        | mg/Nm <sup>3</sup> | 286    | USEPA 6           |  |  |  |  |  |  |
| 10         | Oxides of Nitrogen    | mg/Nm³             | 202    | Flue gas analyzer |  |  |  |  |  |  |

- ➤ Method of estimation of Dust particulates, SO<sub>2</sub>:
- ➤ As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE- 5 (K) SOURCE EMISSION MONITORING Phase -II: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### **JULY 2015**

| Sr.<br>No. | Parameters           | UOM                | Result | Methods           |
|------------|----------------------|--------------------|--------|-------------------|
| Details    | of the source        |                    |        |                   |
| 1          | Capacity             | MW                 | 43     | <del>-</del>      |
| 2          | Stack Height         | М                  | 86     | -                 |
| 3          | Duct Dia.            | М                  | 3.9    | -                 |
| 4          | Duct Area            | m <sup>2</sup>     | 11.9   | -                 |
| Flue G     | as Characteristics   |                    |        |                   |
| 5          | Temperature          | °C                 |        | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s                |        | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s              |        | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm³             | Shut   | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm <sup>3</sup> | Down [ | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm <sup>3</sup> |        | Flue gas analyzer |

- Method of estimation of Dust particulates, SO<sub>2</sub>:
- ➤ As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.S
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)

### TABLE- 5 (L) SOURCE EMISSION MONITORING Phase -II: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### **AUGUST 2015**

| Sr.<br>No. | Parameters           | UOM                | Result | Methods           |
|------------|----------------------|--------------------|--------|-------------------|
| Details    | of the source        |                    | . 1    |                   |
| 1          | Capacity             | MW                 | 43     | -                 |
| 2          | Stack Height         | M                  | 86     | -                 |
| 3          | Duct Dia.            | M                  | 3.9    | ••                |
| 4          | Duct Area            | m <sup>2</sup>     | 11.9   | -                 |
| Flue G     | as Characteristics   |                    |        |                   |
| 5          | Temperature          | °C                 |        | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s                |        | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s              |        | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm³             | Shut   | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm³             | Down   | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm <sup>3</sup> |        | Flue gas analyzer |

- Method of estimation of Dust particulates, SO<sub>2</sub>:
- > As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB. New Delhi.
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE- 5 (M) SOURCE EMISSION MONITORING Phase -II: FOR BOILER - I & II

(Common Stack Attached to Boiler I & Boiler II)

### SEPTEMBER 2015

| Sr.<br>No. | Parameters           | UOM                | Result | Methods           |
|------------|----------------------|--------------------|--------|-------------------|
| Details    | of the source        |                    |        |                   |
| 1          | Capacity             | MW                 | 43     | -                 |
| 2          | Stack Height         | M                  | 86     |                   |
| 3          | Duct Dia.            | М                  | 3.9    | -                 |
| 4          | Duct Area            | m²                 | 11.9   | -                 |
| Flue G     | as Characteristics   |                    |        |                   |
| 5          | Temperature          | °C                 |        | USEPA 1,2,3&4     |
| 6          | Velocity             | m/s                |        | USEPA 1,2,3&4     |
| 7          | Volumetric Flow Rate | Nm³/s              |        | USEPA 1,2,3&4     |
| 8          | Particulate Matter   | mg/Nm <sup>3</sup> | Shut   | USEPA 1,2,3&4     |
| 9          | Sulfur dioxide       | mg/Nm <sup>3</sup> | Down   | USEPA 6           |
| 10         | Oxides of Nitrogen   | mg/Nm <sup>3</sup> |        | Flue gas analyzer |

- ➤ Method of estimation of Dust particulates, SO<sub>2</sub>:
- > As per emission Regulation (Dec, 1985) Part III, COINDS/20/1984-85, published by CPCB, New Delhi.
- ➤ Method of estimation of NOx: As per ASTM D 1608 77 (1990)



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### 2.4 Water Quality

Samples were collected as per the procedures stipulated in IS: 2488. Parameters like Temperature, Electrical Conductivity, pH and Dissolved Oxygen were analyzed insite using portable water analysis kit. Samples were collected by taking suitable precautions, particularly using sterilized bottles for bacteriological analysis. The details of the sampling locations are given in **Table- 6** and depicted in **Figure- 2**.

TABLE- 6
WATER SAMPLING LOCATIONS

| Sample Code          | Locations          | Source                   |
|----------------------|--------------------|--------------------------|
| Surface Water        |                    |                          |
| RW1                  | Raw Water          | Surface Water, Reservoir |
| Waste Water (Effluer | its) UNIT – I      |                          |
| WW1                  | CT blow down       | Waste water              |
| WW2                  | Boiler blow down   | Waste water              |
| WW3                  | DM plant blow down | Waste water              |
| WW4                  | Guard pond         | Waste water              |
| Waste Water (Effluer | its) UNIT – II     |                          |
| WW1                  | CT blow down       | Waste water              |
| WW2                  | Boiler blow down   | Waste water              |
| WW3                  | DM plant blow down | Waste water              |

### 2.4.1 Methodology of Sampling

Water samples were collected for physic-chemical and bacteriological parameters taking suitable precautions. Temperature, pH, Dissolve Oxygen and Electrical Conductivity were measured in the field while collecting the samples.

Sterilized bottles were used to collect samples for bacteriological analysis, stored in the ice and transported to the central laboratory.

### 2.4.2 Analytical Procedure

Dissolve Oxygen, pH, and Temperature and Electrical conductivity were measured in the field using portable analysis kit. Physic-chemical and bacteriological parameters were determined in the laboratory as per standard methods.

Ground and surface water samples were analyzed as per IS: 10500 (1991) and IS: 2296 Class C respectively where as wastewater samples were analyzed as per MPCB Standards. The analytical methods mentioned in IS:3025 and Standard Methods published by APHA were followed. MPN Index of Coli f1orms was found as per standard methods (IS:1622).

### 2.4.3 Results and Discussions

### 2.4.4 Raw Water Quality



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

Ground water and Surface water samples outside the premises was collected and analyzed.

The summary of analyzed parameters is shown in **Table- 6 (A) to (B)**. It can be observed that the pH value of all the samples were in the range of 7.5 - 7.6 and well within the limits. Total dissolve solids are found to be in the range of 620 - 1280 mg/l. Sulphates is found to be in the range of 18.6 - 110 mg/l.

### 2.4.5 Waste Water Quality

Discharges of effluents were found to be confirmed to the limits prescribed by the CPCB. The metals concentrations were found to be well within the limits. Analysis results during the study period were shown in Table – 6 (C) to (F).



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### **TABLE - 6 (A)**

### **GROUND WATER QUALITY IN STUDY AREA - MAY - 2015**

| Sr.<br>No | Parameter                                 | Units   | GW1          | GW2            | GW3            | GW4            | GW5            | GW6            | Limits as<br>per<br>IS:10500 |
|-----------|-------------------------------------------|---------|--------------|----------------|----------------|----------------|----------------|----------------|------------------------------|
|           |                                           |         |              | Pre<br>monsoon | Pre<br>monsoon | Pre<br>monsoon | Pre<br>monsoon | Pre<br>monsoon | Pre monsoon                  |
|           |                                           |         |              | season         | season         | season         | season         | season         | season                       |
|           |                                           |         |              | 16/05/2015     | 16/05/2015     | 16/05/2015     | 16/05/2015     | 16/05/2015     | 16/05/2015                   |
|           |                                           |         |              | 18/05/2015     | 18/05/2015     | 18/05/2015     | 18/05/2015     | 18/05/2015     | 18/05/2015                   |
| 1         | pH                                        |         |              | 7.5            | 7.6            | 7.4            | 7.3            | 7.4            | 7.3                          |
| 2         | Color                                     | Hazen   | <u>Hazen</u> | 2              | 3              | 2              | 3              | 2              | 2                            |
| 3         | Taste                                     |         |              | Agreeable      | Agreeable      | Agreeable      | Agreeable      | Agreeable      | Agreeable                    |
| 4         | Odour                                     |         |              | Agreeable      | Agreeable      | Agreeable      | Agreeable      | Agreeable      | Agreeable                    |
| 5         | Conductivity                              | μs/cm   | us/cm        | 423            | 502            | 611            | 728            | 1007           | 823                          |
| 6         | Turbidity                                 | NTU     | NTU          | 3              | 4              | 4              | 3              | 4              | 4                            |
| 7         | Total Dissolved Solids                    | mg/l    | mg/l         | 298            | 329            | 413            | 490            | 660            | 585                          |
| 8         | Total Hardness as<br>CaCO₃                | mg/l    | mg/l         | 148            | 174            | 186            | 221            | 293            | 297                          |
| 9         | Total Alkalinity                          | mg/l    | mg/l         | 161            | 180            | 223            | 232            | 333            | 299                          |
| 10        | Calcium as Ca <sup>2+</sup>               | mg/l    | mg/l         | 27.1           | 33.3           | 37.1           | 49.6           | 68.3           | 68.1                         |
| 11        | Magnesium as Mg <sup>2+</sup>             | mg/l    | mg/l         | 19.6           | 22.1           | 22.6           | 23.5           | 29.6           | 30.7                         |
| 12        | Residual Chlorine                         | mg/l    | mg/l         | <0.2           | <0.2           | <0.2           | <0.2           | <0.2           | <0.2                         |
| 13        | Boron                                     | mg/l    | mg/l         | 0.09           | 0.12           | 0.06           | 0.10           | 0.19           | 0.13                         |
| 14        | Chloride as Cl*                           | mg/l    | mg/l         | 28.1           | 26.3           | 36.2           | 65.2           | 74.2           | 70.1                         |
| 15        | Sulphate as SO <sub>4</sub> <sup>2+</sup> | mg/l    | mg/l         | 15.4           | 23.6           | 36.2           | 65.2           | 36.1           | 26.6                         |
| 16        | Fluorides as F                            | mg/l    | mg/l         | 0.3            | 0.5            | 0.4            | 0.4            | 0.5            | 0.4                          |
| 17        | Nitrate as NO <sub>3</sub>                | mg/l    | mg/l         | 5.3            | 3.2            | 11.4           | 16.8           | 17.7           | 16.2                         |
| 18        | Sodium as Na <sup>+</sup>                 | mg/l    | mg/l         | 24.5           | 25.2           | 43.2           | 51.1           | 81.2           | 58.1                         |
| 19        | Potassium as K <sup>+</sup>               | mg/l    | mg/l         | 16.3           | 14.7           | 20.4           | 27,4           | 19.4           | 15.8                         |
| 20        | Phenolic Compounds                        | mg/l    | mg/l         | < 0.001        | < 0.001        | < 0.001        | < 0.001        | < 0.001        | <0.001                       |
| 21        | Cyanides                                  | mg/l    | mg/l         | < 0.02         | <0.02          | <0.02          | <0.02          | <0.02          | <0.02                        |
| 22        | Anionic Detergents                        | mg/l    | mg/l         | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           | <0.1                         |
| 23        | Mineral Oil                               | mg/l    | mg/l         | <0.01          | < 0.01         | <0.01          | < 0.01         | <0.01          | <0.01                        |
| 24        | Cadmium as Cd                             | mg/l    | mg/l         | < 0.001        | < 0.001        | <0.001         | < 0.001        | <0.001         | <0.001                       |
| 25        | Total Arsenic as As                       | mg/l    | mg/l         | < 0.01         | <0.01          | < 0.01         | < 0.01         | < 0.01         | < 0.01                       |
| 26        | Copper as Cu                              | mg/l    | mg/l         | <0.01          | < 0.01         | < 0.01         | <0.01          | < 0.01         | < 0.01                       |
| 27        | Led as Pb                                 | mg/l    | mg/l         | < 0.01         | <0.01          | < 0.01         | <0.01          | <0.01          | <0.01                        |
| 28        | Manganse as Mn                            | mg/l    | mg/l         | <0.01          | <0.01          | < 0.01         | <0.01          | <0.01          | < 0.01                       |
| 29        | Iron as Fe                                | mg/l    | mg/l         | 0.10           | 0.16           | 0.21           | 0.18           | 0.17           | 0.15                         |
| 30        | Total Chromium as Cr                      | mg/l    | mg/l         | <0.05          | < 0.05         | < 0.05         | <0.05          | <0.05          | <0.05                        |
| 31        | Selenium as Se                            | ma/l    | mg/l         | < 0.01         | < 0.01         | < 0.01         | <0.01          | < 0.01         | <0.01                        |
| 32        | Zinc as Zn                                | mg/l    | mg/l         | 0.17           | 0.31           | 0.19           | 0.16           | 0.15           | 0.13                         |
| 33        | Aluminium as Al                           | mg/l    | mg/l         | <0.01          | <0.01          | <0.01          | <0.01          | <0.01          | <0.01                        |
| 34        | Mercury as Hg                             | mg/l    | mg/l         | <0.001         | <0.001         | <0.001         | <0.001         | <0.001         | <0.001                       |
| 35        | Pesticides                                | mg/l    | mg/l         | Absent         | Absent         | Absent         | Absent         | Absent         | Absent                       |
| 36        | E. Coli                                   |         |              | Absent         | Absent         | Absent         | Absent         | Absent         | Absent                       |
| 37        | Total Coliforms (MPN /<br>100ml)          | MPN/100 | MPN/100      | Absent         | Absent         | Absent         | Absent         | Absent         | Absent                       |

GW1.Arasmeta Village (Bore well), GW2.Mulmula (Bore well), GW3. Parsada (Bore well) GW4. Sonsari Village (Bore well), GW5. Nariyara (Bore well) & GW6. Amora Village (Bore well)



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE – 6(B) WASTE WATER QUALITY – BOILER BLOW DOWN Phase – I & II

| Parameters                   | APRIL<br>2015 | MAY<br>2015 | JUNE<br>2015 | JULY<br>2015 | AUGU<br>ST<br>2015 | SEPTE<br>MBER<br>2015 | Limits As<br>per<br>CECB |
|------------------------------|---------------|-------------|--------------|--------------|--------------------|-----------------------|--------------------------|
| Total Suspended Solid (mg/l) | Shut<br>Down  | 21          | 14           | 20           | 18                 | 27                    | 100 mg/l                 |
| Oil and Grease (mg/l)        | Shut<br>Down  | <1.0        | <1.0         | <1.0         | <1.0               | <1.0                  | 10 mg/l                  |
| Copper (total) (mg/l)        | Shut<br>Down  | 0.06        | 0.07         | 0.05         | 0.04               | 0.03                  | 1 mg/l                   |
| Iron (total) (mg/l)          | Shut<br>Down  | 0.18        | 0.15         | 0.17         | 0.10               | 0.12                  | 1 mg/l                   |

### TABLE - 6(C) WASTE WATER QUALITY - COOLING TOWER BLOW DOWN Phase - I & II

| Parameters                     | APRIL<br>2015 | MAY<br>2015 | JUNE<br>2015 | JULY<br>2015 | AUGU<br>ST<br>2015 | SEPTEM<br>BER<br>2015 | Limits<br>As per<br>CECB |
|--------------------------------|---------------|-------------|--------------|--------------|--------------------|-----------------------|--------------------------|
| рН                             | Shut<br>Down  | 7.5         | 8.0          | 7.8          | 7.0                | 7.3                   | 6.5-8.5                  |
| Free Available Chlorine (mg/l) | Shut<br>Down  | <0.2        | <0.2         | <0.2         | <0.2               | <0.2                  | 0.5                      |
| Zinc (mg/l)                    | Shut<br>Down  | <0.01       | <0.01        | <0.01        | <0.01              | <0.01                 | 1.0                      |
| Chromium (Total) (mg/l)        | Shut<br>Down  | <0.01       | <0.01        | <0.01        | <0.01              | <0.01                 | 0.2                      |
| Phosphate (mg/l)               | Shut<br>Down  | 1.0         | 0.5          | 0.4          | 0.6                | 0.5                   | 5.0                      |

### <u>TABLE - 6 (D)</u> WASTE WATER QUALITY - GUARD POND

| Parameters                                         | APRIL<br>2015 | MAY<br>2015 | JUNE<br>2015 | JULY<br>2015 | AUGU<br>ST<br>2015 | SEPTEM<br>BER<br>2015 | Limits<br>As per<br>CECB |
|----------------------------------------------------|---------------|-------------|--------------|--------------|--------------------|-----------------------|--------------------------|
| рН                                                 | Shut<br>Down  | 7.9         | 8.2          | 8.0          | 6.9                | 7.2                   | 6.5-8.5                  |
| Total Suspended Solids (mg/l)                      | Shut<br>Down  | 23          | 30           | 23           | 33                 | 27                    | 100                      |
| Oil & Grease                                       | Shut<br>Down  | <1.0        | <1.0         | <1.0         | <1.0               | <1.0                  | 10                       |
| Chemical Oxygen Demand (mg/l)                      | Shut<br>Down  | 43          | 36           | 29           | 38                 | 40                    | 250                      |
| Biochemical Oxygen Demand (3 days at 27 °C) (mg/l) | Shut<br>Down  | 14          | 11           | 10           | 12                 | 15                    | 30                       |
| Total Dissolve Solids (mg/l)                       | Shut<br>Down  | 915         | 882          | 824          | 990                | 990                   | 2100                     |



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### 2.5 Noise Levels

Noise levels vary depending on the various equipments in the power plant such as Turbine, Feed pump and other equipments. Accordingly, noise levels were recorded at four locations to assess the noise levels due to the plant equipment. The ambient noise levels were also measured at four locations during the study period (April-September, 2015). The details of the noise sampling locations are given in Table - 7 and 8 and depicted in Figure -2.

### 2.5.1 Methodology of Sampling

Noise levels measurements were recorded at 1.5 m away from the noise generating sources. The noise monitoring was carried around the power plant continuously on hourly basis over a period of one day at each location. The noise levels monitoring was carried out using an analog noise level meter manufactured by HI-tech instruments Ltd.

### 2.5.2 Analytical Procedure

A spot noise level was recorded in Decibels dB(A) for the power plant equipment at the distance of 1.5 mts using a precision noise level meter. Ambient Noise levels were measured at 4 locations.

TABLE- 7
NOISE LEVEL MONITORING LOCATIONS INSIDE THE POWER PLANT

| Sample Code | Locations        |  |  |
|-------------|------------------|--|--|
| N1          | Main Gate        |  |  |
| N2          | Admin Building   |  |  |
| N3          | TG Floor         |  |  |
| N4          | Boiler Feed Pump |  |  |

TABLE- 8

AMBIENT NOISE LEVEL MONITORING LOCATIONS AROUND THE POWER PLANT

| Sample Code | Locations        |
|-------------|------------------|
| N5          | Amora Village    |
| N6          | Sonsari Village  |
| N7          | Nariyara Village |
| N8 -        | Arasmeta Village |

### KSK

### SAI LIAGAR POWER COMPANY LTD.

2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### 2.5.3 Result and Discussions

The noise levels recorded at different locations outside the power plant during the study period (April-September 2015) are given in Table -8.

### a. Day time Noise Levels (Lday):

Residential Zone: The daytime noise levels in all the residential locations were observed to be in the range of 44.6 dB(A) to 47.4 dB(A). The highest 47.4 dB(A) was observed at Arasmeta village in the month of September. While the minimum of 44.6 dB(A) was recorded at Sonsari village in the month of May. The noise levels are within the permissible limits of 55 dB(A) during the study period.

### b. Night Noise Levels (Lnight):

Residential Zone: The nighttime noise levels in all the residential locations were observed to be in the range of 41.0dB(A) to 43.8 dB(A). The lowest 41.0dB(A) was observed at Sonsari village in the month of May. While the maximum of 43.8 dB(A) was recorded at Amora village in the month of September. The noise levels are within the permissible limit of 45 dB(A) during the study period.

### Work Zone Noise Levels:

The noise levels recorded at the different machineries inside the power plant are given in **Table - 8 (A).** Noise levels near the work zone measured at 1.5 m distance from the machinery were found to be in the range of 62.4 - 74.0 dB(A), against the OSHA prescribed limits of 90 dB(A) for 8 Hrs. exposure. However, workers at the work zone near the machinery were found to be provided with earmuffs.

### TABLE- 8 (A) NOISE LEVELS OUTSIDE THE POWER PLANT

### **APRIL - 2015**

|         |                  | Noise Level dB(A) |           |             |           |  |  |
|---------|------------------|-------------------|-----------|-------------|-----------|--|--|
| Sr. No. | Locations        | L <sub>day</sub>  | Standards | $L_{night}$ | Standards |  |  |
| N1      | Amora Village    | 46.0              | 55        | 42.4        | 45        |  |  |
| N2      | Sonsari Village  | 45.6              | 55        | 42.0        | 45        |  |  |
| N3      | Nariyara Village | 47.2              | 55        | 43.6        | 45        |  |  |
| N4      | Arasmeta Village | 47.4              | 55        | 43.8        | 45        |  |  |

### TABLE-8 (B)

### NOISE LEVELS OUTSIDE THE POWER PLANT

### MAY - 2015

| Sr. No. | Lasations        |                  | Noise Level dB(A) |                    |           |  |  |  |
|---------|------------------|------------------|-------------------|--------------------|-----------|--|--|--|
|         | Locations        | L <sub>day</sub> | Standards         | L <sub>night</sub> | Standards |  |  |  |
| N1      | Amora Village    | 47.0             | 55                | 43.4               | 45        |  |  |  |
| N2      | Sonsari Village  | 44.6             | 55                | 41.0               | 45        |  |  |  |
| N3      | Nariyara Village | 46.4             | 55                | 42.8               | 45        |  |  |  |
| N4      | Arasmeta Village | 46.2             | 55                | 42.6               | 45        |  |  |  |



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE-8 (C)

### NOISE LEVELS OUTSIDE THE POWER PLANT

### JUNE - 2015

| Sr. No. | Locations        | Noise Level dB(A) |           |                    |           |  |  |  |
|---------|------------------|-------------------|-----------|--------------------|-----------|--|--|--|
| 31. NO. | Locations        | L <sub>day</sub>  | Standards | L <sub>n[ght</sub> | Standards |  |  |  |
| N1      | Amora Village    | 46.4              | 55        | 42.5               | 45        |  |  |  |
| N2      | Sonsari Village  | 45.8              | 55        | 42.2               | 45        |  |  |  |
| N3      | Nariyara Village | 47.0              | 55        | 43.4               | 45        |  |  |  |
| N4      | Arasmeta Village | 45.3              | 55        | 41.7               | 45        |  |  |  |

### TABLE-8 (D)

### **NOISE LEVELS OUTSIDE THE POWER PLANT**

### **JULY - 2015**

| Sr. No.  | Locations        | Noise Level dB(A) |           |                    |           |  |  |  |
|----------|------------------|-------------------|-----------|--------------------|-----------|--|--|--|
| 31. 110. | Locations        | L <sub>day</sub>  | Standards | L <sub>night</sub> | Standards |  |  |  |
| N1       | Amora Village    | 45.5              | 55        | 41.9               | 45        |  |  |  |
| N2       | Sonsari Village  | 46.7              | 55        | 43.1               | 45        |  |  |  |
| N3       | Nariyara Village | 46.4              | 55        | 42.8               | 45        |  |  |  |
| N4       | Arasmeta Village | 46.0              | 55        | 42.4               | 45        |  |  |  |

### **TABLE-8 (E)**

### **NOISE LEVELS OUTSIDE THE POWER PLANT**

### **AUGUST - 2015**

| Sr. No. | Locations        | Noise Level dB(A) |           |                    |           |  |  |
|---------|------------------|-------------------|-----------|--------------------|-----------|--|--|
|         | Locations        | L <sub>day</sub>  | Standards | L <sub>nlght</sub> | Standards |  |  |
| N1      | Amora Village    | 45.9              | 55        | 42.3               | 45        |  |  |
| N2      | Sonsari Village  | 45.8              | 55        | 42.2               | 45        |  |  |
| N3      | Nariyara Village | 45.5              | 55        | 41.9               | 45        |  |  |
| N4      | Arasmeta Village | 47.0              | 55        | 43.4               | 45        |  |  |



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### TABLE-8 (F)

### NOISE LEVELS OUTSIDE THE POWER PLANT

### SEPTEMBER - 2015

| Sr. No.  | Locations        | Noise Level dB (A) |           |        |           |  |  |
|----------|------------------|--------------------|-----------|--------|-----------|--|--|
| 31. 140. | Locations        | L <sub>day</sub>   | Standards | Lnight | Standards |  |  |
| N1       | Amora Village    | 47.2               | 55        | 43.6   | 45        |  |  |
| N2       | Sonsari Village  | 45.0               | 55        | 41.4   | 45        |  |  |
| N3       | Nariyara Village | 46.1               | 55        | 42.5   | 45        |  |  |
| N4       | Arasmeta Village | 46.2               | 55        | 42.6   | 45        |  |  |

### TABLE- 9 NOISE LEVELS INSIDE THE POWER PLANT dB (A)

| Sr. No. | Location            | APRIL<br>2015 | MAY<br>2015 | JUNE<br>2015 | JULY<br>2015 | AUGUST<br>2015 | SEPTEMBER<br>2015 |
|---------|---------------------|---------------|-------------|--------------|--------------|----------------|-------------------|
| NL5     | Main Gate           | Shut<br>down  | 70.8        | 72.2         | 73.6         | 72.0           | 73.4              |
| NL6     | Admin Building      | Shut<br>down  | 63.6        | 64.8         | 62.4         | 64.1           | 65.7              |
| NL7     | TG Floor            | Shut<br>down  | 71.3        | 70.9         | 69.7         | 72.8           | 70.9              |
| NL8     | Boiler Feed<br>Pump | Shut<br>down  | 67.6        | 73.1         | 71.9         | 73.3           | 74.0              |



2 x 43 MW Coal Based Power Plant Phase – I & II P.O.: Gopal Nagar, Dist.: Janjgir - Champa (C. G.) ENVIRONMENTAL COMPLIANCE STATUS REPORT APRIL TO SEPTEMBER 2015

### <u>TABLE – 10</u> <u>GREEN BELT DEVELOPMENT</u> Year wise Tree Plantation Details for the period of 2007 to 2015.

| S. N. | Year | No. of<br>Plants | Type of Plants                                                | Remark |
|-------|------|------------------|---------------------------------------------------------------|--------|
| 1.    | 2007 | 7000             | Arjun, Karanj, Arkesia, Shisham, Aanvala,<br>Jamun & Jetropha |        |
| 2.    | 2008 | 7100             | Arjun, Karanj, Arkesia, Shisham, Aanvala,<br>Jamun & Jetropha | 77     |
| 3.    | 2009 | 10000            | Eucalyptus & Casuarinas                                       | mar.   |
| 4.    | 2010 | 2000             | Neem, Kadamb, Gulmohar & Ashok                                |        |
| 5.    | 2011 | 4400             | Kadamb, Gulmohar & Ashok                                      |        |
| 6.    | 2012 | 2000             | Kadamb, Gulmohar & Ashok                                      |        |
| 7.    | 2013 | 1000             | Kadamb, Gulmohar & Ashok                                      |        |
| 8.    | 2014 | 1000             | Kadamb, Gulmohar & Ashok                                      |        |
| 9.    | 2015 | 1000             | Kadamb & Ashok                                                |        |

The target for plantation in the year 2016 is 1000 no. of saplings.